$See \ discussions, stats, and \ author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/330346334$

Reducing alcohol consumption during pre-drinking sessions: testing an integrated behaviour-change model

Article in Psychology and Health · January 2019

DOI: 10.1080/08870446.2018.1518527	
------------------------------------	--

Reducing Alcohol Consumption during Pre-Drinking Sessions: Testing an Integrated Behaviour-Change Model

Kim M. Caudwell*¹, Jacob J. Keech², Kyra Hamilton^{2,1}, Barbara A. Mullan^{1,3}, Martin S.

Hagger^{1,2}

¹Health Psychology and Behavioural Medicine Research Group, School of Psychology and

Speech Pathology, Faculty of Health Sciences, Curtin University, Perth, Western Australia

²School of Applied Psychology, Griffith University, Mt. Gravatt, Brisbane, Queensland,

Australia 4122.

³School of Psychology, University of Sydney, Sydney New South Wales, Australia 2006.

Full citation: Caudwell, K. M., Keech, J. J., Hamilton, K., Mullan, B. A., & Hagger, M. S. (2019). Reducing alcohol consumption during pre-drinking sessions: Testing an integrated behaviour-change model. *Psychology & Health*. doi: 10.1080/08870446.2018.1518527

*Corresponding author

1			
3	1	Abstract	
4			
5	-		
6	2	Objective: Pre-drinking, the practice of consuming alconol prior to attending a subsequent	
7	2		
8 0	3	event, increases the risk of alconor-related narm, and is common in undergraduate student	
9 10	4	nonvilations. The automatic study tested on integrated behaviour abange model to identify the	
10	4	populations. The current study tested an integrated behaviour change model to identify the	
12	-	motivational social cognitive and implicit predictors of producting	
13	Э	motivational, social-cognitive, and implicit predictors of pre-drinking.	
14			
15	6	Design: University students ($N = 289$) completed an online questionnaire comprising	
16	-		
17	7	measures of motivational and social-cognitive constructs related to reducing pre-drinking	
18			
19	8	alcohol consumption and past behaviour, and an implicit association test for drinking identity.	
20			
22	9	Participants reported their pre-drinking alcohol consumption at follow-up, four weeks from	
23			
24	10	baseline.	
25			
26			
27	11	Main Outcome Measures: Self-reported pre-drinking alcohol consumption.	
28			
29	12 F	Results: A variance-based structural equation model revealed that few model hypotheses	
31		1 51	
32	13 v	vere supported. Although the effects of past behaviour, perceived behavioural control, and	
33			
34	14 i	mplicit drinking identity, on follow-up pre-drinking alcohol consumption were	
35			
36	15 statistically significant, the effect of intention was not.		
3/			
30 30	100	Conclusion. Cumont findings indicate and drinking clashel consumption is appointed with	
40	16(conclusion. Current findings indicate pre-drinking alconol consumption is associated with	
41	17	nest habeviour paragived habevioural control and implicit drinking identity and not	
42	17	past behaviour, perceived behavioural control, and implicit drinking identity, and not	
43	18 i	ntentions to reduce pre-drinking alcohol consumption. Finding raise questions over the	
44	101	inclutions to reduce pre-drinking alcohol consumption. I manig faise questions over the	
45	19	validity of applying the integrated model in this context. Interventions should consider these	
46	15	validity of apprying the integrated model in this context. Interventions should consider these	
4/	20	factors and attempt to facilitate the formation of intentions that lead to subsequent behaviour	
40 40	20	racions and accompt to racintate are remained of intentions that read to subsequent contribut.	
50			
51	21	Keywords: pre-drinking; alcohol; self-determination theory; theory of planned behaviour;	
52			
53	22	dual-systems model	
54			
55			
סכ 57			
58			

23 Introduction

Pre-drinking is defined as the consumption of alcohol prior to attending a subsequent event, where alcohol consumption often continues (Pedersen & LaBrie, 2007), and has been linked to greater risk of alcohol-related harm. Pre-drinkers have higher blood alcohol concentrations than those who do not pre-drink (Barry, Stellefson, Piazza-Gardner, Chaney, & Dodd, 2013). Further, approximately 25% of pre-drinkers report becoming unconscious during a pre-drinking session within the previous month (LaBrie, Hummer, Kenney, Lac, & Pedersen, 2011) and are also more likely to report experiencing violent incidents within the previous twelve months (Miller et al., 2015). Pre-drinking is prevalent in university student populations, which also have higher overall rates of excessive alcohol consumption compared to non-student populations (Burns et al., 2015; Hallett, McManus, Maycock, Smith, & Howat, 2014; Kypri, Cronin, & Wright, 2005). Research related to pre-drinking has generally focused on its prevalence, and relationship to alcohol-related harm (Miller et al., 2015; Wells, Graham, & Purcell, 2009), as well as understanding pre-drinkers' motives that reflect perceived practical and social benefits of engaging in pre-drinking (LaBrie, Hummer, Pedersen, Lac, & Chithambo, 2012). However, there appears to be a relative dearth of predrinking research that incorporates psychological theories of motivation and social cognition (Foster & Ferguson, 2013). For example, the theory of planned behaviour (Ajzen, 1991, 2015) has been widely applied to investigate excessive patterns of alcohol consumption in a wide range of settings (Cooke, Dahdah, Norman, & French, 2014). Research applying social psychological theories to predict health behaviour provide an evidence base of the factors and mechanisms that may inform the development of effective behaviour change interventions (Hamilton & Hagger, 2014).

46 Recently, Hagger and Chatzisarantis (2014) have proposed an integrated behaviour
47 change model which represents recent developments in synthesising research findings from

Page 3 of 47

48	two psychological theories: self-determination theory (Deci & Ryan, 1985), and the theory of
49	planned behaviour (Ajzen, 1991). Self-determination theory concerns the quality of
50	motivation in influencing behavioural engagement, whereby motivation exists on a
51	continuum from more controlled (less self-determined) to autonomous (more self-
52	determined) forms. Where controlled motivation refers to external regulations for engaging in
53	behaviour (e.g., because of some extrinsic reward, or to avoid feelings of guilt or shame),
54	autonomous motivation refers to more internal regulations (e.g., because of some intrinsically
55	meaningful reward, or for enjoyment). The theory of planned behaviour states that intention,
56	which reflects motivation to participate in future behavioural, is a direct predictor of
57	behaviour, and is a function of three sets of belief-based evaluations – attitude towards
58	engaging in the behaviour; the subjective norm, or perceived social influence related to
59	behavioural engagement, and perceived behavioural control. Integration of these theories is
60	based on their complementary explanations of behaviour and maximisation of parsimony
61	(Hagger, 2014; Hagger & Chatzisarantis, 2009). Self-determination theory presents the
62	motivational basis for behavioural engagement but does not clarify how motivation leads to
63	action, whereas the theory of planned behaviour presents belief-based evaluations that
64	influence intention (i.e., attitude, subjective norm, perceived behavioural control) but is not
65	concerned with how these beliefs are formed. The result of integration is a framework where
66	autonomous motivation influences attitude, subjective norm, and perceived behavioural
67	control, which in turn influences intention. For example, an individual may consider reducing
68	pre-drinking alcohol consumption for its valued benefits (e.g., health outcomes), then
69	forming positive attitudes towards reducing future reductions in pre-drinking alcohol
70	consumption (e.g., that doing so would be beneficial, or good), influencing their intentions
71	accordingly. However, it is important to note that controlled motivation may be especially
72	relevant to the formation of belief-based evaluations that underlie intentions to consume

alcohol (Chawla, Neighbors, Logan, Lewis, & Fossos, 2009; Knee & Neighbors, 2002). Similarly, an individual may have an external rationale for reducing pre-drinking alcohol consumption (e.g., a friend or family member wanting them to), which is associated with feelings of guilt or shame at the thought of failure to do so. The individual is, therefore, more likely to form beliefs consistent with this external rationale, which is consistent with the conceptualization of subjective norm as comprising external influences to act (e.g., people who are important to me would want me to reduce my pre-drinking alcohol consumption) and intention.

An important advancement of Hagger and Chatzisarantis' (2014) integrated behaviour change model is the incorporation of reflective and impulsive components from dual-systems theories (Hofmann, Friese, & Wiers, 2008; Strack & Deutsch, 2004). While a reflective, deliberative route incorporates an individual's motivation and social cognitions (e.g., autonomous motivation, attitude, intentions, subjective norms), an impulsive, non-conscious route to behaviour incorporates learned cue-response associations, typically measured using reaction-time-based tasks that infer associations beyond conscious awareness (Strack & Deutsch, 2004). Increasing evidence has shown that the impulsive system plays an important role in determining health behaviour, as more reflective psychological constructs, (e.g., from motivational and social cognition theories) are not ubiquitously influential (Hagger, 2016). A noted limitation of reflective constructs is demonstrated by research concerning intention-behaviour "gap", and issues with *inclined abstainers* (Orbell & Sheeran, 1998) – individuals who intend to act, yet do not do so. When intention is low, or shows modest prediction of behaviour, impulsive processes may override these intentions, or showing stronger prediction of behaviour (Hofmann, Friese, & Strack, 2009; Hofmann et al., 2008).

96 Caudwell and Hagger (2015) have previously applied a model based on the
97 motivational sequence from the integration of self-determination theory and the theory of

		4		
1	1	I	L	
-		1	г	

planned behaviour premise, to predict students' intentions to engage in pre-drinking sessions. The authors found students' autonomous motivation towards engaging in pre-drinking were associated with their attitudes, and intentions, towards doing so in the next month. The integrated behaviour change model is broader in scope, in that it incorporates the influence of impulsive processes that are thought to operate outside the more reflective measures of motivational and social cognitive constructs. The aim of the present study was, therefore, to extend previous applications of the integrated behaviour change model to pre-drinking by incorporating implicit measures that capture impulsive processes to action in order to better understand reflective and impulsive constructs underlying individuals' pre-drinking alcohol consumption. The present study will make a unique contribution to knowledge, as it is the first to apply a newly-proposed integrated model based on multiple theoretical perspectives on health behaviour to health behaviour, and is also the first to apply the model to pre-drinking behaviour, a pattern of alcohol consumption that has rarely been studied, particularly in studies adopting a theoretical approach. Given previous research which has revealed effects

of explicit social cognitive, motivational and volitional constructs as well as implicit factors on alcohol consumption behaviour, application of an integrated behaviour change model may provide a more detailed account of the influence of these factors as they relate to pre-drinking. Specifically, the items for self-determination theory and the theory of planned behaviour constructs referred to reducing alcohol consumption behaviour over the following four-week period. This was to elucidate potential areas that might be targetable in health behavioural interventions in this population. A series of hypotheses were formulated based on the proposed relationships of the integrated behaviour change model and research from its component theories, presented in Figure 1.

We hypothesised that the paths between autonomous motivation and attitude, 123 subjective norm, perceived behavioural control, and intention, would be statistically 124 significant (H1). An individual that is autonomously motivated to reduce their pre-drinking 125 alcohol consumption, will do so because the behaviour is consistent with their genuine sense 126 of self, and something they would do out of their own choice or volition. They would likely 127 to align their personal beliefs regarding future pre-drinking with these autonomous reasons. 128 These beliefs are represented by the belief-based social cognitive constructs from the theory 129 of planned behavior in the integrated behaviour change model. For example, the individual 130 will likely hold positive attitudes consistent with their autonomous motives to reduce their 131 pre-drinking alcohol consumption in the future (e.g., that it would be beneficial, useful, and 132 positive). This relationship has been noted in previous research on binge drinking among 133 university students (Hagger et al., 2012). Similarly, a relationship between autonomous 134 motivation and subjective norm may reflect internalized support for reducing pre-drinking 135 alcohol consumption stemming from important social referents (e.g., friends; Chawla et al., 136 2009). In addition, an individual that is autonomously motivated to reduce their pre-drinking 137 alcohol consumption will tend to perceive a strong sense of agency to do so (Deci & Ryan, 138 1985), which may positively contribute to perceptions of behavioural control.

In relation to the effects of controlled motivation in the model, we proposed that paths from controlled motivation to attitude, subjective norm, perceived behavioural control, and intention, would be statistically significant (H2). Although controlled motives do not tend to be related to persistence with behavior over a long period of time, controlled motives can be effective in predicting behavior when external contingencies are present or salient. Previous research on controlled motivation and alcohol consumption has found individuals who exhibit controlled motives likely consume alcohol for reasons related to peer influence or self-esteem (Chawla, Neighbors, Logan, Lewis, & Fossos, 2009; Knee & Neighbors, 2002),

Page 7 of 47

REDUCING PRE-DRINKING ALCOHOL CONSUMPTION

which may influence their intentions to do so in the future. We therefore predicted that 148 controlled motivation would be related to subjective norms for reducing pre-drinking alcohol 149 consumption (e.g., Knee & Neighbors, 2002). For example, an individual citing controlled 150 motives for reducing pre-drinking would be motivated to avoid feelings of guilt or shame at 151 the thought of failing to meet those expectations. The individual may therefore hold beliefs 152 consistent with their controlled reasons for reducing their pre-drinking, such as beliefs that 153 significant others expected them to reduce their pre-drinking, represented by the subjective 154 norm construct (Ajzen, 1991). Similarly, these external rationales may lead the individual to 155 perceive low levels of agency or control over their pre-drinking manifested in a negative 156 relationship between controlled motivation and perceived behavioural control (i.e., high 157 levels of controlled motivation would be associated with lower perceived control over the 158 decision to pre-drink). this is consistent with research demonstrating that controlled forms of 159 motivation may reflect a lack of satisfaction of the need for competence and, therefore, tend 160 to be associated with lower perceived competence with respect to participating in the 161 behaviour in future (Knee & Neighbors, 2002).

162 Consistent with the tenets of the theory of planned behaviour, we hypothesised 163 significant paths between attitude, subjective norm, and perceived behavioural control, and 164 intention (H₃), and between intention and perceived behavioural control, and pre-drinking 165 alcohol consumption (H₄), where perceived behavioural control approximated actual control 166 (Ajzen, 1991).

Finally, consistent with previous research demonstrating the influence of impulsive from 168 processes on health behaviour (Hofmann et al., 2008; Strack & Deutsch, 2004), we from 169 hypothesised that the path between implicit drinking identity and follow-up pre-drinking from 170 alcohol consumption would be statistically significant (H₅). The drinking identity implicit from 171 association test (IAT) (Lindgren et al., 2012) was selected as a measure of impulsive

processes. Scores on the test have been found to predict a range of alcohol-related outcomes
(e.g., consumption, expenditure, and harm), an indication of the contribution of impulsive
processes to alcohol consumption.

We also predicted a series of process-related mediation effects among constructs in 176 our proposed model. We hypothesised that the effects of autonomous (H₆) and controlled 177 (H₇) motivation on intention would be mediated by attitude, subjective norm, and perceived 178 behavioural control. This would provide support for an integrated behaviour change model, in 179 which individuals' beliefs with respect to future behavioral participation are aligned with 180 their generalized motivational orientations from self-determination theory (Hagger & 181 Chatisarantis, 2014). Consistent with previous research, we expected the indirect effects of 182 controlled motivation on intention and behavior to be smaller relative to those of autonomous 183 motivation (Hagger et al., 2011; Hagger, & Chatzisarantis, 2014).

Method

185 Participants

Participants were students recruited from two Australian universities. Students opting to participate in return for course credit and the study advertised on flyers displayed around campuses. Eligibility criteria were that participants had to be current drinkers, who had engaged in pre-drinking within the previous twelve months. The study was approved by respective university human research ethics committees. Participants were directed to a webpage providing information about the study, before proceeding to an electronic consent form that informed participants that clicking 'next' indicated they were providing consent to participate. The study was correlational in design, with participants completing theory-based and pre-drinking alcohol consumption measures at baseline, and invited via automated email

to complete the same pre-drinking alcohol consumption behavioural measures at follow-up,four weeks later.

197	Participants (total $N = 289$, 76.50% female, $M_{age} = 20.11$ years, $SD = 2.37$ years) were
198	undergraduate students from Australian universities, in Western Australia ($n = 132$; 75.80%
199	female; M age = 19.92, SD_{age} = 2.74 years) and Queensland (n = 157; 77.10% female; M_{age} =
200	20.28 years, $SD_{age} = 2.00$ years). Most of the participants identified as Caucasian Australian
201	(Western Australian sample = 73.50% ; Queensland sample = 79.00%) and the majority
202	reporting consuming alcohol at least once a month (Western Australian sample = 87.10%;
203	Queensland sample = 72.00%). Participants from Western Australia reported studying in the
204	Faculty of Health Sciences ($n = 117$; 88.60%) with a small minority of participants studying
205	on programmes from multiple faculties ($n = 12$; 9.10%), and other Faculties ($n = 3$; 3.10%).
206	The majority of participants from Queensland reported studying in the Health Sciences
207	faculty ($n = 65$; 41.40%), followed by students studying on programs in combined faculties
208	(n = 36; 22.90%), the Arts, Education and Law faculty (26; 16.50%), and Sciences faculty (n
209	= 16; 10.20%). There were no differences between the typical pre-drinking alcohol
210	consumption of Western Australian ($M = 6.03$, $SD = 2.93$) and Queensland ($M = 5.80$, $SD =$
211	4.35) university students: $t(287) = .52$, $p = .605$, nor were there any differences between
212	faculties in terms of the distributions of typical pre-drinking frequency (Western Australia:
213	$\chi^2(3) = 4.01$, $p = .261$; Queensland: $\chi^2(6) = 3.97$, $p = .680$) or typical pre-drinking alcohol
214	consumption (Western Australia: $\chi^2(3) = 2.44$, p = .486; Queensland: $\chi^2(7) = 3.01$, p = .798).

215 Measures

A complete list of measures in included in the Appendix (online supplementarymaterials).

Theory of planned behaviour constructs. Measures followed Ajzen's (2002) guidelines in relation to target, context, action and time (i.e., reducing alcohol consumption during pre-drinking sessions over the next four weeks), adapted from previous research (Caudwell & Hagger, 2015). Responses were made on six-point scales; scale anchors are provided in the Appendix. Five items were used to measure participants' attitudes towards reducing their pre-drinking over the next four weeks. Bipolar statements with a common stem (e.g., "reducing my alcohol consumption during pre-drinking sessions over the next four weeks would be...") were presented, with participants indicating their response (e.g., bad – good). Four items were used to measure subjective norm (e.g., "People whose opinions I value would want me to reduce my alcohol consumption during pre-drinking sessions over the next four weeks"). Four items were used to measure perceived behavioural control (e.g., "Reducing my alcohol consumption during pre-drinking sessions over the next four weeks is up to me"), and three items were used to measure intentions (e.g., "I intend to reduce my pre-drinking alcohol consumption over the next four weeks"). Self-determination theory constructs. Statements based on the perceived locus of causality scale and adapted for pre-drinking were used (see Caudwell & Hagger, 2015). Participants responded to a series of statements reflecting motivational regulations for reducing pre-drinking alcohol consumption. Statements reflecting identified regulation (e.g., "I reduce my alcohol consumption during pre-drinking sessions because I value the benefits") and intrinsic motivation (e.g., "It is enjoyable to reduce my alcohol consumption during pre-drinking sessions") were used. Statements reflecting extrinsic motivation (e.g., "I reduce my alcohol consumption during pre-drinking sessions because I will feel guilty or embarrassed if I do not") and introjected regulation (e.g., "I reduce my alcohol consumption

during pre-drinking sessions because other people say I should") were used to reflect

242	controlled motivation. Responses were provided on a four-point scales ranging from 1 (not at
243	all true) to 4 (very true).
244	Implicit drinking identity. The drinking identity implicit association test (IAT) is a
245	variation on the computerised implicit association test paradigm, which requires participants

specified keyboard commands corresponding to left (e) or right (i) sides of the screen. The

task comprises seven blocks, each comprising twenty trials. Specifically, blocks comprise the

to sort word stimuli presented in the centre of the screen into corresponding categories, using

249 categories drinker (i.e., drink, drinker, drunk, partier) and non-drinker (i.e., abstain,

250 abstainer, non-drinker, sober); and/or the categories me (i.e., me, mine, my, myself) and not

251 me (e.g., theirs, them, they, others). Blocks 1, 2, and 5 require the participant to sort word

stimuli (e.g., my) into one of two categories (e.g., me or not me). Blocks 3 and 4, and 6 and 7,

253 require the participant to sort word stimuli (e.g., my or drunk) into one of two paired

254 categories (e.g., *drinker + me*, or *non-drinker + not me*). Blocks 6 and 7 differ from blocks 3

and 4, in that the side of the screen is switched for the *me* and *not me* categories. Response

256 latencies for each trial are compared for blocks 3 and 4, and 6 and 7, revealing bias towards a

257 certain category/attribute pairing (e.g., participants may take less time to sort words, and

258 make fewer errors, in blocks where *drinker* + *me* and *non-drinker* and *not me* pairings are

used). The resulting metric, termed a D-score (Greenwald, Nosek, & Banaji, 2003), is

260 calculated based on a series of steps and established inclusion/exclusion criteria for trials and

261 participants. Trials longer than 10,000*ms* are excluded from the calculation (i.e., they are too

long to be considered accurate or implicit), and participants for whom more than 10% of

trials exhibit a response latency *less* than 300ms are excluded (i.e., they are likely non-

264 compliant). Positive D-scores indicate quicker associations with *drinker* + *me* pairings;

265 negative scores indicate quicker associations to *drinker* + *not me* pairings. The IAT

266 demonstrates strong internal consistency and test-retest reliability, and has been used in

university student samples (Lindgren, Foster, Westgate, & Neighbors, 2013; Lindgren, Neighbors, et al., 2016; Lindgren et al., 2012; Lindgren, Ramirez, Olin, & Neighbors, 2016; Ramirez, Dennhardt, Baldwin, Murphy, & Lindgren, 2016). The IAT procedure was administered online, consistent with previous research (Caudwell & Hagger, 2014). Internal consistency reliability coefficients for the IAT were .42 for the Western Australian sample, and .50 for the Queensland sample, with the former coefficient slightly lower than those observed in previous research (Greenwald et al., 2003).¹ **Pre-drinking alcohol consumption.** At baseline (past behaviour) and follow-up, participants reported the standard drinks² they had consumed during pre-drinking sessions per week, over the previous four weeks. Consistent with previous approaches, participants were shown a pictorial guide adapted from the National Health and Medical Research Council (NHMRC, 2009) to aid in their standard drink estimates (Black & Mullan, 2015; Caudwell & Hagger, 2015). **Analytic Method** We used partial least squares-based structural equation modelling (PLS-SEM) to test the hypothesised relationships in the integrated behaviour change model (see Figure 1). The PLS-SEM analysis comprises two models: a measurement, or outer model; and, a structural, or inner model (Hair, Hult, Ringle, & Sarstedt, 2013). The measurement model consists of the relationships between latent constructs (also termed latent variables) and their indicators – in this case, from the integrated theoretical model (i.e., questionnaire items), and is evaluated based on criteria associated with the reliability of indicators and their loadings on respective and other constructs. The structural model consists of relationships between variables (e.g.,

¹Data on the number of participants whose IAT data was excluded due to not meeting the screening criteria is not available due to a software error.

²A 'standard drink' differs between countries. In Australia, a standard drink is a beverage that contains 10g of ethanol, compared to 14g in the United States, and 8g in the United Kingdom (Furtwaengler & Visser, 2013).

 Figure 1), represented by standardised path coefficients (β), associated statistical significance values (*p*), and effect sizes (f^2), and is evaluated by observing a range of metrics related to the suitability of the model in predicting variance in endogenous, or dependent variables (Kock, 2015).

Variance-based structural equation modelling was selected as it is a distribution-free modelling method (i.e., data need not meet distributional assumptions), making it adequate for use with alcohol consumption data (Hair, Ringle, & Sarstedt, 2011; Neal & Simons, 2007). Results of PLS-SEM analyses are similar to covariance-based approaches, and are considered well-suited to theory testing and applications in psychological research (Hair et al., 2013; Willaby, Costa, Burns, MacCann, & Roberts, 2015). Further, mediation analyses can be conducted in PLS-SEM by isolating the path of interest, and comparing the indirect and total effects (Kock, 2015). Using this method, a significant indirect and total effect is indicative of partial mediation, and a significant indirect and total effect in the absence of a significant direct effect is indicative of complete mediation (Kock, 2011).

A series of criteria have been recommended to evaluate PLS-SEM analyses, related to the convergent and discriminant validity of the outer model, and the predictive relationships between latent variables in the inner model (Kock, 2015; Vinzi, Chin, Henseler, & Wang, 2010). To satisfy convergent validity, both Cronbach's alpha and composite reliability coefficients for each factor must exceed .70, and the average variance extracted (AVE) in each factor must exceed .50. To satisfy discriminant validity, the square root of the average variance extracted (\sqrt{AVE}) for each factor must exceed its correlation with other factors in the model (Fornell & Larcker, 1981). A resampling algorithm is recommended to increase the stability of path coefficients between variables, and reduce standard errors when estimating the model (Kock, 2015). It is also necessary that both the average block variance inflation factor (AVIF) and average full collinearity variance inflation factor (AFVIF) are less than or

314	equal to 3.30, indicating little influence of variable collinearity and multicollinearity (Kock,
315	2015). Finally, a suitable inner model comprises a statistically significant average path
316	coefficient (APC) and adjusted average R^2 (AA R^2). A Goodness of Fit statistic (Tenenhaus,
317	Amato, & Vinzi, 2004) has been developed for PLS-SEM, however its use and interpretation
318	is subject to debate (Hair et al., 2013). Individual model hypotheses were tested via the
319	evaluation of standardised path coefficients (β) between proposed constructs in the model and
320	their associated effect size, analogous to Cohen's (1988) f^2 statistic (Kock, 2015), whereby
321	effect sizes of .02, .15, and .35 are interpreted as small, medium, and large, respectively.

In terms of model specification, we assigned items to indicate each respective latent 323 factor underlying the integrated model (e.g., the latent variable 'attitude' was indicated by the 324 five attitude items). Attitude, subjective norm, perceived behavioural control, and intention 325 factors, were indicated by their respective items in this way. The autonomous motivation 326 factor was indicated by items measuring intrinsic motivation and identified regulation to 327 reduce pre-drinking alcohol consumption, whereas the controlled motivation factor was 328 indicated by items measuring extrinsic and introjected regulation to reduce pre-drinking 329 alcohol consumption (Vansteenkiste, Simons, Lens, Sheldon, & Deci, 2004). Gender (coded 330 as 1 = male, 2 = female), sample (coded as 1 = Western Australia, 2 = Queensland), age, and 331 IAT D-score were estimated as single-item latent factors. The past behaviour (i.e., baseline 332 pre-drinking alcohol consumption) and follow-up pre-drinking alcohol consumption factors 333 were each indicated by four items representing pre-drinking alcohol consumption for the four 334 weeks prior to baseline and follow-up. We controlled for baseline pre-drinking alcohol consumption, age, gender, and sample, by drawing paths from these factors to all other latent

336	factors in the model, consistent with previous approaches (Caudwell & Hagger, 2015; Kock,
337	2011) ³ .
338	Results
339	Preliminary analyses
340	We conducted a preliminary analysis to detect the extent of bias across University
341	samples in demographic and psychological measures. A one-way MANOVA revealed a
342	statistically significant main effect for state on model variables, $F(10, 265) = 5.325$, $p < .001$;
343	η_{p}^{2} = .17. Statistically significant differences were observed between averaged item means for
344	autonomous motivation (Western Australia sample: $M = 1.81$, $SD = .61$; Queensland sample:
345	$M = 2.00, SD = .76; F(1,274) = 4.72, p = .031, \eta_p^2 = .02)$, perceived behavioural control
346	(Western Australia sample: $M = 5.19$, $SD = .73$; Queensland sample: $M = 5.62$, $SD = .51$;
347	$F(1,274) = 33.24, p < .001, \eta_p^2 = .11)$, follow-up pre-drinking alcohol consumption (Western
348	Australia sample: $M = 3.89$, $SD = 9.29$; Queensland sample: $M = 2.03$, $SD = 4.23$; $F(1,274) =$
349	4.82, $p = .029$, $\eta_p^2 = .02$), and implicit drinking identity (Western Australia sample: $M = .36$,
350	$SD = .44$; Queensland sample: $M = .24$, $SD = .45$, $F(1,274) = 5.03$, $p = .026$, $\eta_p^2 = .02$),
351	although the effect sizes for the differences were small. No significant gender differences
352	between samples were observed, $\chi^2(1) = .07$; $p = .793$, nor were there differences in age
353	between samples: $t(287) = -1.30$, $p = .194$ Attrition analyses using averaged item scores
354	from model variables indicated no difference between participants who dropped out (WA =
355	162, $Qld = 81$) or remained (WA = 132, $Qld = 157$) in the study: Western Australia sample: F
356	$(9,284) = 1.90, p = .052, \eta_p^2 = .06$; Queensland sample: $F(9,228) = .95, p = .487, \eta_p^2 = .04$).
357	The samples were combined for analyses with PLS-SEM; descriptive statistics for the pooled
358	sample are included in Table 1.

³Relationships between control and model variables are available in the online supplementary materials

359 Model evaluation

360	Internal reliability and discriminant validity indices met the established criteria (see
361	Table 1). Regarding internal reliability, Cronbach's alpha scores ranged from .74 to .98,
362	composite reliability scores, based on the factor loadings, ranged from .84 to .99, and the
363	AVE for each factor exceeded .50 ($M_{AVE} = .68$; $SD_{AVE} = .14$), indicating acceptable
364	convergent validity. Regarding discriminant validity, \sqrt{AVE} for each factor exceeded that
365	factor's correlation with other factors. The AVIF and AFVIF values were below the
366	recommended cut-off value of 3.50 (Kock, 2015), indicating no issues with variable
367	collinearity and multicolinearity. Both the APC (.11) and AAR^2 (.18) were statistically
368	significant ($p < .001$), and the Tenenhaus Goodness of Fit (Tenenhaus et al., 2004) was .37
369	(large), indicating that the model represented good fit with these data. Overall, the model
370	accounted for 47% of the variance in intention to reduce pre-drinking alcohol consumption,
371	and 22% of the variance in pre-drinking alcohol consumption at follow-up.

372 Path coefficients

Figure 2 shows the statistically-significant direct path coefficients in the integrated behaviour change model, controlling for gender⁴, sample (i.e., 1 = Western Australia; 2 = Queensland), and past behaviour. The path between autonomous motivation and attitude was statistically significant, with a medium effect size ($\beta = .42, p < .001, f^2 = .20$). Consistent with our hypothesis (H₁), paths between autonomous motivation and subjective norm ($\beta = .18, p =$ 001, $f^2 = .05$), perceived behavioural control ($\beta = .12, p = .019, f^2 = .03$), and intention ($\beta =$.23, $p = < .001, f^2 = .12$) were statistically significant, all with small effect sizes. Paths from controlled motivation to subjective norm ($\beta = .29 \ p < .001, f^2 = .11$), perceived behavioural

⁴We tested whether the model paths and pattern of relationships hypothesised in the integrated behaviour change model differed by gender. Using Satterthwaite Approximation and pooled standard error approaches to compare the path coefficients from each model (Kock, 2014), we found no statistically significant differences.

control ($\beta = -.23 \ p < .001, f^2 = .07$), and intention ($\beta = .12, p = .022, f^2 = .05$) were statistically significant with small effect sizes. However, the path between controlled motivation and attitude was not statistically significant ($\beta = .10, p = .052, f^2 = .03$)⁵. 384 Therefore, H_2 was supported for the effect of perceived control but not attitude. The path between attitude and intention was statistically significant, ($\beta = .43 \ p < .001, f^2 = .27$) with a 386 medium effect size. However, the path between subjective norm and intention ($\beta = .07 p =$.124, $f^2 = .03$), and between perceived behavioural control and intention ($\beta < .01$, p = .496, f^2 $388 \le 0.01$) were not statistically significant, so we rejected our hypothesis (H₃). The path between intention and pre-drinking behaviour was also not statistically significant ($\beta = .03 \ p = .296, f^2$ $< .01)^{6}$. However, the path between perceived behavioural control and pre-drinking alcohol consumption was statistically significant ($\beta = -.18 \ p = <.001, f^2 = .04$), with a small effect 392 size. We only found support for the effect for perceived behavioral control specified in our 393 hypothesis (H₄). The path between implicit drinking identity and pre-drinking alcohol consumption was statistically significant, with a small effect size ($\beta = .11 \ p = .026, f^2 = .01$), 395 providing support for H₅. It should be noted that the path from past behaviour to pre-drinking alcohol consumption was statistically significant, ($\beta = .35$, p < .001, $f^2 = .14$), with a small

397 effect size.

398 Mediation analyses

We also tested a model excluding the 52 participants who reported did not report consuming alcohol during predrinking sessions at baseline (n = 237). Results revealed similar patterns of effects to the overall sample, with the following differences: the controlled motivation – intention path was statistically non-significant (β = .03, p = .301 f^2 = .01); the subjective norm to intention path was statistically significant (β = .11, p = .037, f^2 = .05); autonomous motivation to PBC was statistically non-significant (β = .08, p = .098, f^2 = .01); and the controlled motivation – attitude was statistically significant (β = .14, p = .017, f^2 = .05) in this sample.

⁵We tested a model excluding the 61 participants who reported consuming alcohol less than once a month (n = 228). Results revealed similar patterns of effects to the overall sample, with slightly larger Beta values associated with the PBC – PDAC (β = -.26, p < .001, f^2 = .06) and D – PDAC (β = .16, p = .009, f^2 = .02) paths. The effect of controlled motivation on attitude was also statistically significant (β = .11, p = .049, f^2 = .04), when it was not significant in the overall sample.

> Support for only one of the proposed mediation effects was found. The effect of autonomous motivation on intention was partially mediated by autonomous motivation (direct effect = .23, Cohen's f^2 = .12; p < .001; indirect effect = .18, Cohen's f^2 = .09, p = < 402 .001; total effect = .47, Cohen's f^2 = .24; p < .001), with small-to-medium effect sizes, 403 providing support for out hypothesis H₆. The remainder of the proposed mediation effects 404 were not supported, as evidenced by non-significant direct effects (i.e., there was no effect to 405 mediate), and/or non-significant indirect effects (i.e., the effect was not mediated). These 406 results are presented in the Appendix.

Discussion

The aim of the present study was to test the motivational, explicit social cognitive, 409 and implicit factors that influence intentions to reduce pre-drinking alcohol consumption and 410 subsequent behaviour. We found limited support for the proposed relationships between 411 constructs with the exception of the partial mediation of the effect of autonomous motivation 412 on intention through attitude, and the direct effects from perceived behavioural control and 413 implicit drinking identity to behaviour. The lack of an intention-behaviour relationship 414 provides limited support for the integrated behaviour change model in predicting pre-drinking 415 alcohol consumption (Ogden, 2003; Weinstein, 2007). However, results offer an important 416 contribution to the understanding of the predictors of pre-drinking alcohol consumption, 417 particularly the prominent role for implicit drinking identity. It also justifies our decision to 418 adopt a model incorporating dual processes. Had we selected an approach based solely on 419 social cognitive and motivational factors we would have failed to explain variance in pre-420 drinking beyond the effects of past behavior.

421 Results indicated significant positive associations between autonomous motivation
422 and attitudes, subjective norm, and perceived behavioural control; and between controlled

423	motivation and subjective norm, indicating that individuals form these belief-based
424	evaluations of reducing pre-drinking alcohol consumption consistent with their motivational
425	orientations. The negative path from controlled motivation to perceived behavioural control
426	indicates that individuals who exhibit more external rationales for reducing pre-drinking (e.g.,
427	"because I would feel guilty or embarrassed if I do not") likely experience low perceptions of
428	control over engaging in such behaviour in the future. The relationships between autonomous
429	and controlled motivation and perceived behavioural control may be explained by
430	considering perceived behavioural control as comprising self-efficacy (e.g., "if I wanted to do
431	X, I could") and perceived controllability (e.g., "How much control do you have over doing
432	X?"; Armitage & Conner, 1999; Fishbein & Ajzen, 2011) ⁷ . Similarly, Cooke et al. (2014)
433	demonstrated that the self-efficacy and perceived control components of perceived
434	behavioural control, had different effects on alcohol consumption intentions and behaviour
435	(i.e., self-efficacy was strongly correlated with intentions and behaviour related to engaging
436	in alcohol consumption; whereas perceived control had small negative correlations with
437	intentions and behaviour). The effects of autonomous and controlled motivation on perceived
438	behavioural control may therefore relate to different but related aspects of the superordinate
439	construct. For example, an individual with more controlled motives for reducing pre-drinking
440	alcohol consumption may feel they have low perceived controllability over doing so, as they
441	express external rationales for behavioural engagement. Conversely, an individual who is
442	more autonomously motivated to reduce pre-drinking alcohol consumption may form beliefs
443	consistent with self-efficacy (i.e., "If I wanted to reduce my pre-drinking alcohol
444	consumption, I could"). Future research could further test these relations using distinct
445	measures of perceived controllability and self-efficacy (Cooke et al., 2014).

⁷Fishbein and Ajzen (2011) refer to these constructs as *capacity* and *autonomy*, respectively.

The finding regarding the effect of autonomous motivation and attitudes on intentions to reduce pre-drinking alcohol consumption is consistent with previous research (Cooke et al., 2014; McEachan, Conner, Taylor, & Lawton, 2011). That the effect of autonomous motivation on intention was mediated by attitudes suggests that individuals believe that reducing pre-drinking alcohol consumption carries meaningful benefits that may form the basis of their intentions. However, that there was no statistically significant effect of intention on pre-drinking behaviour warrants further examination. Given the substantial effect of past behaviour (i.e., baseline pre-drinking alcohol consumption) on follow-up pre-drinking alcohol consumption, the proposed constructs in the integrated behaviour change model had relatively trivial effects on behaviour. This means that even if students held autonomous orientations and positive attitudes toward reducing pre-drinking, such motives were only related to precipitating intentions to reduce their pre-drinking alcohol consumption and not actual behaviour. Intentions were, therefore, do not seem to be implicated in students' participation to in pre-drinking. The large effect of past behaviour on follow-up pre-drinking alcohol consumption is consistent with previous meta-analytic research on alcohol consumption (Hagger, Chan, Protogerou, & Chatzisarantis, 2016), and seems to indicate that this behaviour is more to be under control of habitual (Hamilton, Kirkpatrick, Rebar, & Hagger, 2017) or likely non-conscious determinants (Hagger, 2016; Sheeran, Gollwitzer, & Bargh, 2013).

Individuals reporting high control over reducing pre-drinking alcohol consumption
reported lower levels of pre-drinking alcohol consumption at follow-up. According to Ajzen
(1991), this occurs when individuals have a high level of information regarding the
behaviour, or when requirements or resources to perform the behaviour remain constant. In
this case, individuals high in perceived behavioural control may be better able to access and
use available information to form accurate control beliefs regarding reducing pre-drinking

alcohol consumption (e.g., the ability to refuse drinks, or plan reductions in advance; Hagger 472 et al., 2012; Murgraff, White, & Phillips, 1996; Young, Connor, Ricciardelli, & Saunders, 473 2006). The effect of implicit drinking identity on follow-up pre-drinking alcohol consumption 474 is consistent with Strack and Deutsch's (2004) proposal that impulsive processes activate 475 previously-learned behavioural schemata – for example, seeing an alcoholic beverage 476 activating the schema for pre-drinking. These processes influence behaviour independent of 477 deliberative processes, such as intentions (Hofmann et al., 2008; Rebar et al., 2016). This 478 suggests that pre-drinking alcohol consumption may be more related to impulsive processes 479 (as represented by implicit drinking identity). A growing body of research in this area looks 480 at evaluative conditioning and the impulsive system – utilising implicit constructs such as 481 goals (Fishbach, Friedman, & Kruglanski, 2003), as well as attempts to correct and reduce the 482 influence of these processes through training (Allom, Mullan, & Hagger, 2015; Bartsch, 483 Mullan, & Houben, 2014; Black & Mullan, 2015; Houben, Havermans, & Wiers, 2010; 484 Houben, Nederkoorn, Wiers, & Jansen, 2011). Given the results of this study, further research in this area is needed to develop interventions that target both the reflective and impulsive system. Such research should explore methods or strategies that would increase an 487 individual's control over consuming alcohol within a pre-drinking environment, and, resist 488 the contextual or environmental cues that trigger implicit associations that influence pre-489 drinking alcohol consumption (Hollands, Marteau, & Fletcher, 2016; Houben et al., 2011; 490 Houben & Wiers, 2009; Ouellette & Wood, 1998; Papies, 2016).

491 Strengths, Limitations, and Future Research Directions

The present study has a number of strengths and limitations that warrant discussion. The application of the comprehensive integrated behaviour change model to an area of research that has tended to lack a theoretical approach, or focus on cognitive processes and mechanisms, represents a substantial contribution to the understanding of pre-drinking

behaviour. Although our correlational design does not provide strong evidence of causal links
between variables, it highlights important relations between potentially manipulable
psychological factors and pre-drinking behaviour that may provide some basic information to
inform intervention development. For example, interventions may consider targeting both
reflective and impulsive processes - by promoting control over pre-drinking, and reducing the
influence of the impulsive system in determining behaviour (Hollands et al., 2016; Papies,
2016).

Results should also be interpreted in light of the accuracy of participant-reported 504 alcohol consumption (White et al., 2005). Retrospective reports of alcohol consumption are 505 often inaccurate, and tend to be underestimated (Monk, Heim, Qureshi, & Price, 2015). Although we attempted to facilitate participant reporting with a detailed, comprehensive 507 pictorial guide (NHMRC, 2009), we cannot be certain that this increased participants' 508 accuracy. In addition, a lack of correspondence between theory-based measures, and self-509 reported alcohol consumption may have attenuated the intention-behaviour relationship: the 510 former referred to pre-drinking generally, and the latter to standard drinks consumed when 511 pre-drinking. Future research may attempt to quantify pre-drinking alcohol consumption 512 referred to in measures of psychological constructs to maximise correspondence, as has been 513 done to some extent with binge or heavy episodic drinking studies previously (see Cooke et 514 al., 2014). The context in which the theory of planned behaviour measures are completed 515 should also be considered. Cooke and French (2011) demonstrated that completion location 516 affected the relationship between social cognitive constructs and alcohol consumption. 517 Research is increasingly looking towards measures of blood alcohol concentration and event-518 level assessment of alcohol consumption using smartphones (e.g., Barry et al., 2013; 519 Kuntsche, Otten, & Labhart, 2015), and these approaches could benefit further research. It 520 should also be noted that the internal consistency of the drinking identity implicit association

2 3	521	test was lower than typically observed (Greenwald et al., 2003), which may be the result of
4 5 6	522	administering the test online. Research has found no differences in relations among drinking
7 8	523	identity IAT, explicit measures of alcohol beliefs, and alcohol consumption for laboratory-
9 10	524	and online-administered IAT measures (Houben & Wiers, 2008). However, the drinking
11 12	525	identity IAT has yet to tested using these procedures.
13 14 15	526	While the association between the drinking identity IAT and pre-drinking behaviour
16 17	527	within the integrated behaviour change model tested in the current study may serve to
18 19	528	represent one component of the impulsive system – that is associations between alcohol
20 21	529	consumption and personal identity likely constructed over repeated experiences with the
22 23 24	530	behaviour over time - it does not capture the impulsive system explicitly. It may, therefore,
24 25 26	531	be pertinent to test the effects of these associations in the context of other constructs that may
27 28	532	represent the impulsive system. Such constructs may be behavioural prepotency or cue-
29 30	533	behaviour associations. For example, an extension of temporal self-regulation theory (Hall &
31 32	534	Fong, 2007) has been used to ascertain the influence of behavioural prepotency (i.e., past
33 34 25	535	behaviour, habit, and cues to action) on excessive alcohol consumption (Black, Mullan, &
35 36 37	536	Sharpe, 2017). In this augmented model, executive function was found to moderate the effect
38 39	537	of intentions and behavioural prepotency on alcohol consumption behaviour. Further research
40 41	538	that elucidates the conditions under which the impulsive system exerts its influence on
42 43	539	behaviour is necessary to inform effective dual-systems interventions for reducing hazardous
44 45 46	540	alcohol consumption behaviours.
40 47 48	541	Some discussion of the sample composition and demographic background in relation
49 50	542	to study findings is warranted. The majority of the participants were female, studying mainly
51 52	543	in health-related disciplines. Evidence for gender differences in relation to pre-drinking

alcohol consumption is inconclusive, however may be influenced by context effects such as

the absolute number of other pre-drinkers, the number of pre-drinkers from the opposite sex,

or the type of alcohol consumed (Hummer, Napper, Ehret, & LaBrie, 2013; Labhart, Wells, Graham, & Kuntsche, 2014; Ogeil et al., 2016). Differences in alcohol consumption behaviour between faculties of study have been noted, which may reduce the representativeness of the present sample to the university student population (Hallett, Howat, et al., 2014; Webb, Ashton, Kelly, & Kamali, 1997). Finally, the sample on average did not strongly intend to reduce their pre-drinking alcohol consumption, as indicated by the weak relationship between pre-drinking alcohol consumption and intention. Although we have no reason to believe that the low levels of intention and weak intention-behaviour relationship in the current study are not representative of the student population as a whole, it would be premature to reject the integrated model on the basis of these data alone. Replications of current findings in larger, more representative samples are warranted to corroborate current findings.

558 Conclusion

The present study tested an integrated behaviour change model in a pre-drinking context. Overall, we found little support for many of the relationships between motivational and social cognitive constructs, as well as their effects on pre-drinking alcohol consumption. Only the direct effects from perceived behavioural control and implicit drinking identity constructs on pre-drinking alcohol consumption at follow-up were significant, after controlling for past behaviour. This raises question over the applicability of the overall model in this behavioral context, although the non-conscious pathway yielded valuable data on the potential correlates of pre-drinking. We suggest that future research test relations between factors that might be related to non-conscious pathways including traits like self-control (Hagger et al., 2013), causality orientations (Deci & Ryan, 1985), habit (Hagger, Rebar, Mullan, Lipp, & Chatzisarantis, 2015), and affective components of attitudes (Lawton, Conner, & McEachan, 2009), and alongside drinking identity (Caudwell & Hagger, 2014).

Hagger, 2016).

Doing so may provide a better understanding of the psychological constructs that are

influential in determining pre-drinking alcohol consumption, which may contribute to the

both constructs of both the reflective and impulsive systems (e.g., Caudwell, Mullan, &

development of behaviour change interventions to reduce pre-drinking behaviour that target

1	
2	571
3 4	571
5	572
7	573
8 9	574
10 11	
12	575
13	
14 15	
16	
17	
18 19	
20	
21	
22	
24	
25	
20 27	
28	
29 30	
31	
32	
33 34	
35	
36	
37 38	
39	
40	
41 42	
43	
44 45	
45 46	
47	
48 ⊿q	
50	
51	
52 53	
54	
55	
56 57	
58	

576	References
577	Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human
578	Decision Processes, 50(2), 179-211. doi:10.1016/0749-5978(91)90020-t
579	Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological
580	considerations. 1-14.
581	Ajzen, I. (2015). The theory of planned behaviour is alive and well, and not ready to retire: a
582	commentary on Sniehotta, Presseau, and Araújo-Soares. Health psychology review,
583	9(2), 131-137. doi:10.1080/17437199.2014.883474
584	Allom, V., Mullan, B., & Hagger, M. S. (2016). Does inhibitory control training improve
585	health behaviour? A meta-analysis. Health psychology review, 10(2), 168-86.
586	Armitage, C. J., & Conner, M. (1999). The theory of planned behaviour: Assessment of
587	predictive validity and perceived control. British Journal of Social Psychology, 38(1),
588	35-54.
589	Barry, A. E., Stellefson, M. L., Piazza-Gardner, A. K., Chaney, B. H., & Dodd, V. (2013).
590	The impact of pregaming on subsequent blood alcohol concentrations: An event-level
591	analysis. Addictive behaviors, 38(8), 2374-2377. doi:10.1016/j.addbeh.2013.03.014
592	Bartsch, A., Mullan, B., & Houben, K. (2014). The effect of non-specific response inhibition
593	training on alcohol consumption: An intervention. European Health Psychologist,
594	<i>16</i> (S), 399.
595	Black, N., & Mullan, B. (2015). An intervention to decrease heavy episodic drinking in
596	college students: The effect of executive function training. Journal of American
597	College Health, 63(4), 280-284. doi:10.1080/07448481.2014.990969
598	Black, N., Mullan, B., & Sharpe, L. (2017). Predicting heavy episodic drinking using an
599	extended temporal self-regulation theory. Addictive Behaviors, 73, 111-118.
600	https://doi.org/10.1016/J.ADDBEH.2017.04.017

601	
602	Burns, S., Crawford, G., Hallett, J., Jancey, J., Portsmouth, L., Hunt, K., & Longo, J. (2015).
603	Consequences of low risk and hazardous alcohol consumption among university
604	students in Australia and implications for health promotion interventions. Open
605	Journal of Preventive Medicine, Vol.05No.01, 13. doi:10.4236/ojpm.2015.51001
606	Caudwell, K. M., & Hagger, M. S. (2014). Pre-drinking and alcohol-related harm in
607	undergraduates: the influence of explicit motives and implicit alcohol identity.
608	Journal of Behavioral Medicine, 37(6), 1252-1262. doi:10.1007/s10865-014-9573-6
609	Caudwell, K. M., & Hagger, M. S. (2015). Predicting alcohol pre-drinking in Australian
610	undergraduate students using an integrated theoretical model. Applied Psychology:
611	Health and Well-Being, 7(2), 188–213. https://doi.org/10.1111/aphw.12044
612	Caudwell, K. M., Mullan, B. A., & Hagger, M. S. (2016). Combining motivational and
613	volitional approaches to reducing excessive alcohol consumption in pre-drinkers: a
614	theory-based intervention protocol. BMC Public Health, 16(45), 1-12.
615	doi:10.1186/s12889-015-2648-7
616	Chawla, N., Neighbors, C., Logan, D., Lewis, M. A., & Fossos, N. (2009). Perceived
617	approval of friends and parents as mediators of the relationship between self-
618	determination and drinking. Journal of Studies on Alcohol and Drugs, 70(1), 92.
619	Cohen, J. E. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ:
620	Lawrence Erlbaum Associates, Inc.
621	Conner, M., Sandberg, T., McMillan, B., & Higgins, A. (2006). Role of anticipated regret,
622	intentions and intention stability in adolescent smoking initiation. British Journal of
623	Health Psychology, 11(1), 85-101.

624	Cooke, R., Dahdah, M., Norman, P., & French, D. P. (2014). How well does the theory of
625	planned behaviour predict alcohol consumption? A systematic review and meta-
626	analysis. Health psychology review(ahead-of-print), 1-20.
627	Cooke, R., & French, D. P. (2011). The role of context and timeframe in moderating
628	relationships within the theory of planned behaviour. Psychology & Health, 26(9),
629	1225-1240. doi:10.1080/08870446.2011.572260
630	Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human
631	behaviour. New York: Plenum.
632	Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-
633	determination in personality. Journal of Research in Personality, 19, 109-134. doi:
634	10.1016/0092-6566(85)90023-6
635	Fishbach, A., Friedman, R. S., & Kruglanski, A. W. (2003). Leading us not into temptation:
636	Momentary allurements elicit overriding goal activation. Journal of personality and
637	social psychology, 84(2), 296.
638	Fishbein, M., & Ajzen, I. (2011). Predicting and changing behavior: The reasoned action
639	approach: Taylor & Francis.
640	Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with
641	unobservable variables and measurement error. Journal of Marketing Research, 18(1),
642	39-50.
643	Foster, J. H., & Ferguson, C. (2013). Alcohol 'pre-loading': A review of the literature.
644	Alcohol and Alcoholism, agt135.
645	Furtwængler, N. A. F. F., & De Visser, R. O. (2013). Lack of international consensus in low-
646	risk drinking guidelines. Drug and Alcohol Review, 32(1), 11-18.
647	https://doi.org/10.1111/j.1465-3362.2012.00475.x

-		
2 3	648	Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the
4 5 6	649	Implicit Association Test: I. An improved scoring algorithm. Journal of Personality
7 8	650	& Social Psychology, 85(2), 197-216. doi:10.1037/0022-3514.85.2.197
9 10	651	Hagger, M. S. (2009). Theoretical integration in health psychology: Unifying ideas and
11 12	652	complementary explanations. British Journal of Health Psychology, 14(2), 189-194.
13 14	653	doi:10.1348/135910708x397034
15 16	654	Hagger, M. S. (2014). Avoiding the 'déjà-variable' phenomenon: Social psychology needs
17 18 10	655	more guides to constructs. Frontiers in Psychology, 5, 52.
20 21	656	doi:0.3389/fpsyg.2014.00052
22 23	657	Hagger, M. S. (2016). Non-conscious processes and dual-process theories in health
24 25	658	psychology. Health Psychology Review, 10, 375-380.
26 27	659	doi:10.1080/17437199.2016.1244647
28 29	660	Hagger, M. S., Chan, D. K., Protogerou, C., & Chatzisarantis, N. L. (2016). Using meta-
30 31 22	661	analytic path analysis to test theoretical predictions in health behavior: An illustration
32 33 34	662	based on meta-analyses of the theory of planned behavior. Preventive medicine, 89,
35 36	663	154-161. doi:10.1016/j.ypmed.2016.05.020
37 38	664	Hagger, M. S., & Chatzisarantis, N. L. D. (2009). Integrating the theory of planned behaviour
39 40	665	and self-determination theory in health behaviour: A meta-analysis. British Journal of
41 42	666	Health Psychology, 14(2), 275-302. doi:10.1348/135910708x373959
43 44	667	Hagger, M. S., & Chatzisarantis, N. L. D. (2014). An integrated behavior change model for
45 46 47	668	physical activity. Exercise and sport sciences reviews, 42(2), 62-69.
48 49	669	Hagger, M. S., Lonsdale, A. J., Hein, V., Koka, A., Lintunen, T., Pasi, H., Chatzisarantis,
50 51	670	N. L. D. (2011). Predicting alcohol consumption and binge drinking in company
52 53	671	employees: An application of planned behaviour and self-determination theories.
54 55	672	British Journal of Health Psychology, 1-29. doi:10.1111/j.2044-8287.2011.02043.x
56 57 58		

673	Hagger, M. S., Lonsdale, A. J., Koka, A., Hein, V., Pasi, H., Lintunen, T., & Chatzisarantis,
674	N. L. D. (2012). An intervention to reduce alcohol consumption in undergraduate
675	students using implementation intentions and mental simulations: A cross-national
676	study. International Journal of Behavioral Medicine, 19, 82-96.
677	Hagger, M. S., Panetta, G., Leung, CM., Wong, G. G., Wang, J. C. K., Chan, D. KC.,
678	Chatzisarantis, N. L. D. (2013). Chronic inhibition, self-control and eating behavior:
679	Test of a 'resource depletion' model. PLoS ONE, 8, e76888.
680	doi:10.1371/journal.pone.0076888
681	Hagger, M. S., Rebar, A. L., Mullan, B. A., Lipp, O. V., & Chatzisarantis, N. L. D. (2015).
682	The subjective experience of habit captured by self-report indexes may lead to
683	inaccuracies in the measurement of habitual action. Health Psychology Review, 9,
684	296-302. doi: 10.1080/17437199.2014.959728
685	Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2013). A primer on partial least
686	squares structural equation modeling (PLS-SEM). California, USA: SAGE
687	Publications.
688	Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal
689	of Marketing Theory and Practice, 19(2), 139-152. doi:10.2753/MTP1069-
690	6679190202
691	Hall, P. A., & Fong, G. T. (2007). Temporal self-regulation theory: A model for individual
692	health behavior. Health Psychology Review, 1(1), 6-52.
693	doi:10.1080/17437190701492437
694	Hallett, J., Howat, P., McManus, A., Meng, R., Maycock, B., & Kypri, K. (2014). Academic
695	and personal problems among Australian university students who drink at hazardous
696	levels: web-based survey. Health promotion journal of Australia, 24(3), 170-177.

2 3	697	Hallett, J., McManus, A., Maycock, B. R., Smith, J., & Howat, P. M. (2014). "Excessive
4 5	698	Drinking - an inescapable part of university life?" A focus group study of Australian
6 7 8	699	undergraduates. Open Journal of Preventive Medicine, 4(7), 14.
9 10	700	doi:10.4236/ojpm.2014.47071
11 12	701	Hamilton, K., & Hagger, M. S. (2014). The 'health'of health psychology in Australia:
13 14	702	Behavioural approaches and interventions. Australian Psychologist, 49(2), 63-65.
15 16	703	Hamilton, K., Kirkpatrick, A., Rebar, A., & Hagger, M. S. (2017). Child sun safety:
17 18	704	Application of an integrated behavior change model. Health Psychology, 36, 916-926.
19 20 21	705	doi:10.1037/hea0000533
22 23	706	Hofmann, W., Friese, M., & Strack, F. (2009). Impulse and self-control from a dual-systems
24 25	707	perspective. Perspectives on Psychological Science, 4(2), 162-176.
26 27	708	doi:10.1111/j.1745-6924.2009.01116.x
28 29	709	Hofmann, W., Friese, M., & Wiers, R. W. (2008). Impulsive versus reflective influences on
30 31 22	710	health behavior: a theoretical framework and empirical review. Health psychology
32 33 34	711	review, 2(2), 111-137. doi:10.1080/17437190802617668
35 36	712	Hollands, G. J., Marteau, T. M., & Fletcher, P. C. (2016). Non-conscious processes in
37 38	713	changing health-related behaviour: a conceptual analysis and framework. Health
39 40	714	psychology review, 1-14. doi:10.1080/17437199.2015.1138093
41 42	715	Houben, K., Havermans, R. C., & Wiers, R. W. (2010). Learning to dislike alcohol:
43 44 45	716	conditioning negative implicit attitudes toward alcohol and its effect on drinking
45 46 47	717	behavior. Psychopharmacology, 211(1), 79-86. doi:10.1007/s00213-010-1872-1
48 49	718	Houben, K., Nederkoorn, C., Wiers, R. W., & Jansen, A. (2011). Resisting temptation:
50 51	719	Decreasing alcohol-related affect and drinking behavior by training response
52 53	720	inhibition. Drug and Alcohol Dependence, 116(1-3), 132-136.
54 55 56	721	doi:10.1016/j.drugalcdep.2010.12.011
57 58 59		

722	Houben, K., & Wiers, R. W. (2009). Response inhibition moderates the relationship between
723	implicit associations and drinking behavior. Alcoholism: Clinical and Experimental
724	Research, 33(4), 626-633. doi:10.1111/j.1530-0277.2008.00877.x
725	Hummer, J. F., Napper, L. E., Ehret, P. E., & LaBrie, J. W. (2013). Event-specific risk and
726	ecological factors associated with prepartying among heavier drinking college
727	students. Addictive behaviors, 38(3), 1620-1628. doi:10.1016/j.addbeh.2012.09.014
728	Keatley, D. A., Clarke, D. D., & Hagger, M. S. (2013). The predictive validity of implicit
729	measures of self-determined motivation across health-related behaviours. British
730	Journal of Health Psychology, 18(1), 2-17. doi:10.1111/j.2044-8287.2011.02063.x
731	Knee, C. R., & Neighbors, C. (2002). Self-determination, perception of peer pressure, and
732	drinking among college students. Journal of Applied Social Psychology, 32(3), 522-
733	543. doi:10.1111/j.1559-1816.2002.tb00228.x
734	Kock, N. (2011). Using WarpPLS in e-collaboration studies: Mediating effects, control and
735	second order variables, and algorithm choices. International Journal of e-
736	Collaboration, 7(3), 1-13. doi:10.4018/jec.2011070101
737	Kock, N. (2014). Advanced mediating effects tests, multi-group analyses, and measurement
738	model assessments in PLS-based SEM. International Journal of e-Collaboration,
739	10(1), 1-13.
740	Kock, N. (2015). WarpPLS 5.0 User Manual (pp. 55). Texas, USA: ScriptWarp Systems.
741	Kuntsche, E., Otten, R., & Labhart, F. (2015). Identifying risky drinking patterns over the
742	course of Saturday evenings: An event-level study. Psychology of Addictive
743	Behaviors, 29, 744-752. doi:10.1037/adb0000057
744	Kypri, K., Cronin, M., & Wright, C. S. (2005). Do university students drink more
745	hazardously than their non-student peers? Addiction, 100(5), 713-714.

3	746	Labhart, F., Wells, S., Graham, K., & Kuntsche, E. (2014). Do individual and situational
4 5 6	747	factors explain the link between predrinking and heavier alcohol consumption? An
7 8	748	event-level study of types of beverage consumed and social context. Alcohol and
9 10	749	Alcoholism, 49(3), 327-335. doi:10.1093/alcalc/agu001
11 12	750	LaBrie, J. W., Hummer, J., Kenney, S., Lac, A., & Pedersen, E. (2011). Identifying factors
13 14	751	that increase the likelihood for alcohol-induced blackouts in the prepartying context.
15 16	752	Substance use & misuse, 46(8), 992-1002. doi:10.3109/10826084.2010.542229
17 18	753	LaBrie, J. W., Hummer, J. F., Pedersen, E. R., Lac, A., & Chithambo, T. (2012). Measuring
19 20	754	college students' motives behind prepartying drinking: Development and validation of
21 22	755	the prepartying motivations inventory. Addictive behaviors, 37(8), 962-969.
23 24 25	756	doi:10.1016/j.addbeh.2012.04.003
25 26 27	757	Lawton, R., Conner, M. T., & McEachan, R. (2009). Desire or reason: Predicting health
28 29	758	behaviors from affective and cognitive attitudes. Health Psychology, 28, 56-65.
30 31	759	doi:10.1037/a0013424
32 33	760	Lindgren, K. P., Foster, D. W., Westgate, E. C., & Neighbors, C. (2013). Implicit drinking
34 35	761	identity: Drinker + me associations predict college student drinking consistently.
36 37	762	Addictive behaviors $38(5)$ 2163-2166 doi:10.1016/i addbeh 2013.01.026
38 39	762	Lindgren K P. Neighbors C. Teachman B. A. Baldwin S. A. Norris, I. Kaysen D.
40 41	703	Lindgren, K. T., Neighoors, C., Teachinan, D. A., Dardwin, S. A., Norris, J., Kaysen, D.,
42 43	764	Wiers, R. W. (2016). Implicit alcohol associations, especially drinking identity,
44 45	765	predict drinking over time. Health Psychology, 35(8), 908. doi:10.1037/hea0000396
45 46 47	766	Lindgren, K. P., Neighbors, C., Teachman, B. A., Wiers, R. W., Westgate, E., & Greenwald,
48 49	767	A. G. (2012). I drink therefore I am: Validating alcohol-related implicit association
50 51	768	tests. Psychology of Addictive Behaviors, 27(1). doi:10.1016/j.addbeh.2013.01.026
52 53	769	Lindgren, K. P., Ramirez, J. J., Olin, C. C., & Neighbors, C. (2016). Not the same old thing:
54 55	770	Establishing the unique contribution of drinking identity as a predictor of alcohol
56 57		
58		

771	consumption and problems over time. Psychology of Addictive Behaviors, 30(6), 659.
772	doi:10.1037/adb0000195
773	McEachan, R. R. C., Conner, M., Taylor, N. J., & Lawton, R. J. (2011). Prospective
774	prediction of health-related behaviours with the theory of planned behaviour: A meta-
775	analysis. Health psychology review, 5(2), 97-144.
776	doi:10.1080/17437199.2010.521684
777	McLachlan, S., & Hagger, M. S. (2011). The influence of chronically accessible autonomous
778	and controlling motives on physical activity within an extended theory of planned
779	behavior. Journal of Applied Social Psychology, 41(2), 445-470.
780	Miller, P. G., Droste, N., Groot, F., Palmer, D., Tindall, J., Busija, L., Wiggers, J. (2015).
781	Correlates and motives of pre drinking with intoxication and harm around licensed
782	venues in two cities. Drug and Alcohol Review, 35(2), 177–186.
783	https://doi.org/10.1111/dar.12274
784	Monk, R. L., Heim, D., Qureshi, A., & Price, A. (2015). "I have no clue what I drunk last
785	night" Using smartphone technology to compare in-vivo and retrospective self-reports
786	of alcohol consumption. PloS one, 10(5), e0126209.
787	Murgraff, V., White, D., & Phillips, K. (1996). Moderating binge drinking: It is possible to
788	change behaviour if you plan it in advance. Alcohol and Alcoholism, 31(6), 577-582.
789	National Health and Medical Research Council. (2009). Australian guidelines to reduce risks
790	from drinking alcohol. Canberra, ACT: Commonwealth of Australia.
791	Neal, D. J., & Simons, J. S. (2007). Inference in regression models of heavily skewed alcohol
792	use data: A comparison of ordinary least squares, generalized linear models, and
793	bootstrap resampling. Psychology of Addictive Behaviors, 21(4), 441.
794	doi:10.1037/0893-164X.21.4.441

795	Ogden, J. (2003). Some problems with social cognition models: A pragmatic and conceptual
796	analysis. Health Psychology, 22(4), 424-428. doi:10.1037/0278-6133.22.4.424
797	Ogeil, R. P., Lloyd, B., Lam, T., Lenton, S., Burns, L., Aiken, A., Lubman, D. I. (2016).
798	Pre-Drinking Behavior of Young Heavy Drinkers. Substance use & misuse, 51(10),
799	1297-1306. doi:10.3109/10826084.2016.1168443
800	Orbell, S., & Sheeran, P. (1998). 'Inclined abstainers': A problem for predicting healthrelated
801	behaviour. British Journal of Social Psychology, 37(2), 151-165. doi:10.1111/j.2044-
802	8309.1998.tb01162.x
803	Ouellette, J. A., & Wood, W. (1998). Habit and intention in everyday life: the multiple
804	processes by which past behavior predicts future behavior. Psychological bulletin,
805	<i>124</i> (1), 54.
806	Papies, E. K. (2016). Health goal priming as a situated intervention tool: How to benefit from
807	nonconscious motivational routes to health behavior. Health psychology review,
808	10(4), 408-424. doi:10.1080/17437199.2016.1183506
809	Pedersen, E. R., & LaBrie, J. W. (2007). Partying before the party: Examining prepartying
810	behavior among college students. Journal of American College Health, 56(3), 237-
811	245. doi:10.3200/JACH.56.3.237-246
812	Ramirez, J. J., Dennhardt, A. A., Baldwin, S. A., Murphy, J. G., & Lindgren, K. P. (2016).
813	Alcohol-approach inclinations and drinking identity as predictors of behavioral
814	economic demand for alcohol. Experimental and clinical psychopharmacology,
815	ePub(ePub), ePub-ePub. doi:10.1037/pha0000086
816	Rebar, A. L., Dimmock, J. A., Jackson, B., Rhodes, R. E., Kates, A., Starling, J., &
817	Vandelanotte, C. (2016). A systematic review of the effects of non-conscious
818	regulatory processes in physical activity. Health psychology review, 10(4), 395-407.
819	doi:10.1080/17437199.2016.1183505
	 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

820	Sheeran, P., Gollwitzer, P. M., & Bargh, J. A. (2013). Nonconscious processes and health.
821	Health Psychology, 32, 460-473. doi:10.1037/a0029203
822	Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior.
823	Personality and Social Psychology Review, 8(3), 220-247.
824	doi:10.1207/s15327957pspr0803_1
825	Tenenhaus, M., Amato, S., & Vinzi, V. E. (2004). A global goodness-of-fit index for PLS
826	structural equation modelling. Paper presented at the XLII SIS Scientific Meeting,
827	2004, Padova, Italy
828	Vansteenkiste, M., Simons, J., Lens, W., Sheldon, K. M., & Deci, E. L. (2004). Motivating
829	learning, performance, and persistence: the synergistic effects of intrinsic goal
830	contents and autonomy-supportive contexts. Journal of personality and social
831	psychology, 87(2), 246. doi:10.1037/0022-3514.87.2.246
832	Verplanken, B., Aarts, H., Knippenberg, A., & Moonen, A. (1998). Habit versus planned
833	behaviour: A field experiment. British Journal of Social Psychology, 37(1), 111-128.
834	doi:10.1111/j.2044-8309.1998.tb01160.x
835	Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (2010). Handbook of Partial Least
836	Squares : Concepts, Methods and Applications. New York, USA: Springer.
837	Webb, E., Ashton, H., Kelly, P., & Kamali, F. (1997). Patterns of alcohol consumption,
838	smoking and illicit drug use in British university students: interfaculty comparisons.
839	Drug & Alcohol Dependence, 47(2), 145-153. doi:10.1016/S0376-8716(97)00083-5
840	Weinstein, N. D. (2007). Misleading tests of health behavior theories. Annals of Behavioral
841	<i>Medicine</i> , <i>33</i> (1), 1-10.
842	Wells, S., Graham, K., & Purcell, J. (2009). Policy implications of the widespread practice of
843	'pre-drinking' or 'pre-gaming' before going to public drinking establishments - Are

844	current prevention strategies backfiring? Addiction, 104(1), 4-9. doi:10.1111/j.1360-
845	0443.2008.02393.x
846	White, A. M., Kraus, C. L., Flom, J. D., Kestenbaum, L. A., Mitchell, J. R., Shah, K., &
847	Swartzwelder, H. S. (2005). College students lack of knowledge of standard drink
848	volumes: Implications for definitions of risky drinking based on survey data.
849	Alcoholism: Clinical and Experimental Research, 29(4), 631-638.
850	doi:10.1097/01.alc.0000158836.77407.e6
851	Willaby, H. W., Costa, D. S. J., Burns, B. D., MacCann, C., & Roberts, R. D. (2015). Testing
852	complex models with small sample sizes: A historical overview and empirical
853	demonstration of what Partial Least Squares (PLS) can offer differential psychology.
854	Personality and Individual Differences, 84, 73-78. doi:10.1016/j.paid.2014.09.008
855	Young, R. M., Connor, J. P., Ricciardelli, L., & Saunders, J. B. (2006). The role of alcohol
856	expectancy and drinking refusal self-efficacy beliefs in university student drinking.
857	Alcohol and Alcoholism, 41(1), 70-75.
858	
859	

Figure 1. An integrated behaviour change model as applied to pre-drinking alcohol consumption (adapted from Hagger & Chatzisarantis, 2014). Dashed lines represent paths which are posited to be mediated by the hypothesised paths (e.g., autonomous motivation \rightarrow attitude \rightarrow intention). Past behaviour (i.e., baseline pre-drinking alcohol consumption) is omitted for clarity. *Note*. PDAC = follow-up pre-drinking alcohol consumption

	1. Sample	2. Gender	3. Age	4. PB	5. AM	6. CM	7. Att	8. SN	9. PBC	10. Int	11. D	12. PDAC
М	#	#	20.14	3.46	1.90	1.44	3.68	3.45	5.40	2.78	.29	2.67
SD	#	#	2.33	4.69	.70	.52	1.09	1.09	.64	1.43	.46	6.40
AVE	#	#	#	.60	.64	.50	.60	.75	.58	.96	#	.78
α	#	#	#	.77	.92	.86	.83	.89	.74	.98	#	.91
ρ	#	#	#	.85	.93	.89	.88	.92	.84	.99	#	.94
FCVIF	1.16	1.11	1.05	1.28	1.73	1.55	1.91	1.41	1.22	2.81	1.05	1.23
1.	#											
2.	.02	#										
3.	.08	#02	#									
4.	#.08	#10	#12*	.77								
5.	.10	.03	.10	#22**	.80							
6.	#.09	#04	#01	#.03	.44**	.71						
7.	#.05	.14*	.09	#.09	.46**	.30**	.78					
8.	#10	#01	#02	.08	.26**	.38**	.44**	.87				
9.	.28**	.06	.09	#13*	.01	#26**	.04	#05	.76			
10.	#.04	.14*	.02	#.01	.49**	.37**	.62**	.35**	<.01	.98		
11.	#12*	#04	#08	.05	#.01	.11	.03	.10	#.02	.07	#	
12.	#12*	#16	#10	.34**	#.08	.03	#.05	.02	#18**	<#01	.07	.89

Note. \sqrt{AVE} values are presented on the principal diagonal for variables with multiple indicators.

PB = past behaviour (i.e., baseline pre#drinking alcohol consumption); AM = autonomous motivation; CM = controlled motivation; Att = attitude; SN = subjective norm; PBC = perceived behavioural control; Int = intention; D = drinking identity implicit association test D#score; PDAC = follow#up pre#drinking alcohol consumption; α = Cronbach's alpha; ρ = composite reliability

*p < .05; **p < .01. For dichotomous variables Sample and Gender, 1 = Western Australia/male; 2 = Queensland/female.

 Page 40 of 47

Figure 2. Path diagram showing statistically significant standardised path coefficients (β) between variables in the integrated behaviour change model, with variance explained (R^2) in intention and pre-drinking alcohol consumption.

Table 1. Questionnaire Items Measuring Self-Determination Theory, the Theory of Planned Behaviour, and Planning Constructs

Construct	Item	Response scale	
	I limit my alcohol consumption during pre-drinking sessions because other people say I should.		
	I limit my alcohol consumption during pre-drinking sessions		
	because my friends/peers/partner say I should.		
	I limit my alcohol consumption during pre-drinking sessions		
	because others will be disappointed if I don't.		
	I get restless and uncomfortable if I don't limit my alcohol		
СМ	consumption during pre-drinking sessions.	1 (Not at all true) to 4 (Very true)	
0111	I feel bad about myself if I do not limit my alcohol consumption		
	during pre-drinking sessions.		
	I limit my alcohol consumption during pre-drinking sessions		
	because I will feel guilty if I do not.		
	I feel ashamed when I do not limit my alcohol consumption during		
	pre-drinking sessions.		
	I feel under pressure from my friends/peers/partner to limit my		
	alcohol consumption during pre-drinking sessions.		
	I limit my alcohol consumption during pre-drinking sessions		
	because I value the benefits.		
	It is pleasurable to limit my alcohol consumption during pre-		
	arinking sessions.		
	drinking sessions	1 (Not at all true) to (Very true)	
AM	utiliking sessions.		
	sessions.		
	I find limiting my alcohol consumption during pre-drinking		
	sessions a pleasurable activity.		
	I get pleasure and satisfaction from limiting my alcohol		
	consumption during pre-drinking sessions.		

2				
3				
4		Llimit my clockel consumption during are drinking accessions		
5		I limit my alcohol consumption during pre-drinking sessions		
7		because it is an important part of my life.		
8			1 (Unimportant / Not	
9			Worthwhile / Harmful /	
10	A 4474 - 1	For me, reducing my alcohol consumption during pre-drinking	Unenjoyable / Bad) to 6	
11	Attitude	sessions over the next four weeks would be	(Important / Worthwhile	
12			/ Beneficial / Eniovable /	
13			Good)	
14				
15		Most people who are important to me would want me to reduce my	1 (Disagree very	
16		alcohol consumption during pre-drinking sessions over the next	strongly)	
17		four weeks.	Subligity)	
18		Most people I know would approve of me reducing my alcohol	$t_{0} \in (\Lambda \text{ grap very})$	
19		consumption during pre-drinking sessions over the next four	strongly)	
20	CN	weeks.	subligiy)	
21	SIN	Most people whose opinions I value would approve of me		
22		reducing my alcohol consumption during pre-drinking sessions		
23		over the next four weeks.		
24		Most people who are relevant to me would approve of me reducing		
25		my alcohol consumption during pre-drinking sessions over the		
26		next four weeks		
27		How much personal control do you have over reducing your		
20		alcohol consumption during pre-drinking sessions over the next	1 (No control at all) to 6 (Complete control)	
30		four weeks?		
31		It is mostly up to me whether or not I reduce my cleaned		
32		aconsumption during pro-drinking sessions over the post four weeks		
32	РВС	consumption during pre-drinking sessions over the next four weeks	1 (Disagree very	
34		If I wanted to, I could reduce my alconol consumption during pre-	strongly) to 6 (Agree	
35		arinking sessions over the next four weeks.	very strongly)	
36		Reducing my alcohol consumption during pre-drinking sessions		
37		over the next four weeks is up to me.		
38	Intention	I intend to reduce my alcohol consumption during pre-drinking	1 (Disagree very	
39	mention	sessions over the next four weeks.	strongly) to 6 (Agree	
40				
11				

	I plan to reduce my alcohol consumption during pre-drinking sessions over the next four weeks. I will try to reduce my alcohol consumption during pre-drinking sessions over the next four weeks.	very strongly)
Planning*	I will figure out exactly how I can reduce my alcohol consumption during pre-drinking sessions over the next four weeks. I will make a plan to reduce my alcohol consumption during pre- drinking sessions over the next four weeks. I will come up with a strategy to reduce my alcohol consumption during pre-drinking sessions over the next four weeks.	1 (Disagree very strongly) to 6 (Agree very strongly)
<i>Note</i> . CM = controlled motivation; AM = autono	pmous motivation; SN = subjective norm; PBC = perceived behavioural control. Planning wa	as measured but not included in

the main analyses, due to a high correlation with intention (i.e., r = .74) and unsatisfactory crossloadings with intention items.

Gender PB CM PBC Sample Age AM Att SNInt D PDAC Sample .02 .08 -.08 -.09 -.05 -.10 .28* -.04 -.12* -.12* .10 _ Gender -.02 -.10 .03 -.04 .14* -.01 .06 .14* -.04 -.16** -Age -.12* .10 -.01 .10 -.02 .10 .02 -.08 -.10 -PB -.22** -.03 -.09 .08 -.13 -.01 .05 -.36** _

Table 2. Path Coefficients Between Control and Model Variables in the Integrated Behaviour Change Model

p* < .05; *p* < .01;

PB = past behaviour; AM = autonomous motivation; CM = controlled motivation; Att = attitude; SN = subjective norm; PBC = perceived behavioural

control; Int = intention; D = drinking identity implicit association test D-score; PDAC = pre-drinking alcohol consumption.

For dichotomous variables Sample and Gender, 1 = Western Australia/male; 2 = Queensland/female.

Path	Mediator	Direct (f^2)	р	Indirect (f^2)	р	Total (f^2)	р
	Att		<.001	.18 (.09)	<.001	.41 (.21)	<.001
AM-Int	SN	.23 (.12)		.01 (.01)	.388	.24 (.13)	<.001
	PBC			<.01 (<.01)	.499	.23 (.12)	<.001
	Att			.04 (.02)	.162	.16 (.06)	.003
CM-Int	SN	.12 (05)	.022	.02 (.01)	.320	.14 (.05)	.009
	PBC			<.01 (<.01)	.499	.12 (.05)	.022
	Att		.369	.01 (<.01)	.403	`01 (<.01)	.456
	SN	02 (< 01)		<.01 (<.01)	.495	.02 (<.01)	.396
AM-I DAC	PBC	02 (<.01)		<.01 (<.01)	.499	`02 (<.01)	.401
	Int			.01 (<.01)	.414	`01 (<.01)	.461
	Att		.153	<.01 (<.01)	.494	`06 (.01)	.162
CM DDAC	SN SN	06 (01)		`01 (<.01)	.409	`07 (.01)	.104
CIVI-I DAC	PBC	00 (.01)		.04 (.01)	.166	`02 (<.01)	.370
	Int			.01 (<.01)	.440	`06 (.01)	.163
Att-PDAC	Int	01 (<.01)	.440	.01 (<.01)	.383	<.01 (<.01)	.476
SN-PDAC	Int	03 (<.01)	.285	<.01 (<.01)	.482	`03 (<.01)	.297
PBC-PDAC	Int	17 (.03)	.002	<.01 (<.01)	.500	`17 (.03)	.002

Supplementary Table 3. Mediation Results for Paths in the Integrated Behaviour Change Model

Note. AM = autonomous motivation; Int = intention; Att = attitude; SN = subjective norm; PBC = perceived behavioural control; CM = controlled motivation; PDAC = follow-up pre-drinking alcohol consumption