A Classification System for Teachers’ Motivational Behaviors Recommended in Self-Determination Theory Interventions

Online First Publication, May 18, 2023. https://dx.doi.org/10.1037/edu0000783

CITATION
A Classification System for Teachers’ Motivational Behaviors Recommended in Self-Determination Theory Interventions

1 Institute for Positive Psychology and Education, Australian Catholic University
2 School of Psychology, The University of Queensland
3 Department of Sports Science & Clinical Biomechanics, University of Southern Denmark
4 School of Health and Welfare, Halmstad University
5 School of Kinesiology, University of British Columbia
6 Urmia Branch, Islamic Azad University
7 School of Education and Lifelong Learning, University of East Anglia
8 Faculty of Education, The Chinese University of Hong Kong
9 Department of Psychological and Behavioural Science, London School of Economics and Political Science
10 Faculty of Sport Sciences, Pamukkale University
11 Department of Pedagogical and Educational Sciences, Utrecht University
12 Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University
13 Department of Educational Studies, Purdue University
14 Department of Sport Sciences, Miguel Hernández University
15 Department of Movement & Sports Sciences, Ghent University
16 Department of Education, University of Bergen
17 Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu
18 Fontys Sporthogeschool, Fontys University of Applied Sciences
19 Department of Health Sciences and Kinesiology, Waters College of Health Professions, Georgia Southern University
20 School of Health Sciences, Western Sydney University
21 Faculty of Education, Université Laval
22 College of Human and Social Futures, University of Newcastle
23 School of Behavioural and Health Sciences, Australian Catholic University

Asghar Ahmadi https://orcid.org/0000-0001-8710-1653
Michael Noetel https://orcid.org/0000-0002-6563-8203
Philip Parker https://orcid.org/0000-0002-4604-8566
Richard M. Ryan https://orcid.org/0000-0002-2355-6154
Nikos Ntoumanis https://orcid.org/0000-0001-7122-3795
Johnmarshall Reeve https://orcid.org/0000-0002-6827-293X
Mark Beauchamp https://orcid.org/0000-0001-8909-3896
Theresa Dicke https://orcid.org/0000-0001-8868-2242
Alexander Yeung https://orcid.org/0000-0003-3462-9475
Malek Ahmadi https://orcid.org/0000-0002-5349-7490
Kimberley Bartholomew https://orcid.org/0000-0002-0171-7922
Thomas K. F. Chiu https://orcid.org/0000-0003-2887-5477
Thomas Curran https://orcid.org/0000-0003-2443-5079
Gokce Erturan https://orcid.org/0000-0002-1461-2679
Barbara Flunger https://orcid.org/0000-0001-8111-1228
Christina Frederick https://orcid.org/0000-0003-4637-7842
John Mark Froiland https://orcid.org/0000-0002-2700-3987
David González-Cutre https://orcid.org/0000-0003-5854-3992
Leen Haeren https://orcid.org/0000-0001-5715-9520
Lucas Matias Jeno https://orcid.org/0000-0003-3160-9313
Andre Koka https://orcid.org/0000-0002-2011-8650
Christa Krijgsman https://orcid.org/0000-0003-4979-633X
Jody Langdon https://orcid.org/0000-0002-5589-1694
Rhiannon Lee White https://orcid.org/0000-0002-5118-6226
David Litalien https://orcid.org/0000-0002-2456-3161
David Lubans https://orcid.org/0000-0002-0204-2527
John Mahoney https://orcid.org/0000-0002-1056-7348
Ma. Jenina N. Nalipay https://orcid.org/0000-0002-1401-9648
Erika Patall https://orcid.org/0000-0003-3448-8932
Dana Perlman https://orcid.org/0000-0003-3349-6420
Eleanor Quested https://orcid.org/0000-0002-6211-9045
Sascha Schneider https://orcid.org/0000-0003-4690-3777
Martyn Standage https://orcid.org/0000-0002-9683-8590
Kim Stroet https://orcid.org/0000-0001-6775-4454
Damien Tessier https://orcid.org/0000-0002-0728-585X
Cecilie Thogersen-Ntoumani https://orcid.org/0000-0003-0255-1263
Henri Tilga https://orcid.org/0000-0003-2055-1263
Diego Vasconcellos https://orcid.org/0000-0002-7948-3740
Chris Lonsdale https://orcid.org/0000-0002-2523-5565
Teachers’ behavior is a key factor that influences students’ motivation. Many theoretical models have tried to explain this influence, with one of the most thoroughly researched being self-determination theory (SDT). We used a Delphi method to create a classification of teacher behaviors consistent with SDT. This is useful because SDT-based interventions have been widely used to improve educational outcomes. However, these interventions contain many components. Reliably classifying and labeling those components is essential for implementation, reproducibility, and evidence synthesis. We used an international expert panel \((N = 34) \) to develop this classification system. We started by identifying behaviors from existing literature, then refined labels, descriptions, and examples using the Delphi panel’s input. Next, the panel of experts iteratively rated the relevance of each behavior to SDT, the psychological need that each behavior influenced, and its likely effect on motivation. To create a mutually exclusive and collectively exhaustive list of behaviors, experts nominated overlapping behaviors that were redundant, and suggested new ones missing from the classification. After three rounds, the expert panel agreed upon 57 teacher motivational behaviors (TMBs) that were consistent with SDT. For most behaviors (77%), experts reached consensus on both the most relevant psychological need and influence on motivation. Our classification system provides a comprehensive list of TMBs and consistent terminology in how those behaviors are labeled. Researchers and practitioners designing interventions could use these behaviors to design interventions, to reproduce interventions, to assess whether these behaviors moderate intervention effects, and could focus new research on areas where experts disagreed.

Educational Impact and Implications Statement

The things teachers do in class have an important influence on their students’ motivation, engagement, and learning. This study uses an international expert panel to identify the teacher behaviors most likely to influence motivation—specifically, teacher behaviors that increase the more healthy, autonomous motivation that comes from within students. This list of behaviors, agreed upon by the experts, could be used by teachers trying to improve their practice, policymakers trying to scale interventions, and researchers trying to assess which behaviors best predict student outcomes.

Keywords: taxonomy, engagement, intervention design, behavior change techniques, behavior change techniques

Supplemental materials: https://doi.org/10.1037/edu0000783.supp

John Mark Froiland is now at Paul’s Plan Ministries, West Lafayette, Indiana, United States. Asghar Ahmadi was funded by the Australian Research Council (DP160102625). The authors declare that they have no competing interests. Nikos Ntoumanis is a consulting editor for the *Journal of Educational Psychology*. The questionnaire and methodology for this study were approved by the Human Research Ethics Committee of the Australian Catholic University (Approval No. 2020-160E). The study materials, data, and code of this study are available at https://osf.io/apvyf/.

Conceptualization was completed by Asghar Ahmadi, Michael Noetel, Philip Parker, Theresa Dicke, Mark Beauchamp, Nikos Ntoumanis, Richard M. Ryan, Johnmarshall Reeve, Alexander Yeung, and Chris Lonsdale. Methodology was completed by Asghar Ahmadi, Michael Noetel, Philip Parker, Richard M. Ryan, Johnmarshall Reeve, Mark Beauchamp, Theresa Dicke, Nikos Ntoumanis, Kimberly Bartholomew, Cecilie Thogersen-Ntoumani, Martyn Standage, Leen Haerens, Christina Frederick, David Litalien, Eleanor Quested, Diego Vasconcellos, Dana Perlman, Damien Tessier, John Mahoney, John Mark Froiland, Christa Krijgsman, Malek Ahmadi, Rhiannon Lee White, Andre Koka, Barbara Flunger, David González-Cutre, David Lubans, Erika Patall, Gokce Erturan, Henri Tilga, Jody Langdon, Lucas Matias Jeno, Ma. Jenina N. Nalipay, Sascha Schneider, Thomas Curran, Thomas K. F. Chiu, Kim Stroet, Alexander Yeung, and Chris Lonsdale. Analysis was completed by Asghar Ahmadi, Michael Noetel, Philip Parker, and Chris Lonsdale. Writing—original draft preparation was completed by Asghar Ahmadi, Michael Noetel, Philip Parker, and Chris Lonsdale. Writing—review and editing was completed by Asghar Ahmadi, Michael Noetel, Philip Parker, Richard M. Ryan, Johnmarshall Reeve, Mark Beauchamp, Theresa Dicke, Nikos Ntoumanis, Kimberly Bartholomew, Cecilie Thogersen-Ntoumani, Martyn Standage, Leen Haerens, Christina Frederick, David Litalien, Eleanor Quested, Diego Vasconcellos, Dana Perlman, Damien Tessier, John Mahoney, John Mark Froiland, Christa Krijgsman, Malek Ahmadi, Rhiannon Lee White, Andre Koka, Barbara Flunger, David González-Cutre, David Lubans, Erika Patall, Gokce Erturan, Henri Tilga, Jody Langdon, Lucas Matias Jeno, Ma. Jenina N. Nalipay, Sascha Schneider, Thomas Curran, Thomas K. F. Chiu, Kim Stroet, Alexander Yeung, and Chris Lonsdale. Funding acquisition was completed by Philip Parker, Theresa Dicke, Mark Beauchamp, Nikos Ntoumanis, Richard M. Ryan, Alexander Yeung, and Chris Lonsdale. Supervision was completed by Michael Noetel, Philip Parker, Theresa Dicke, Mark Beauchamp, Nikos Ntoumanis, Richard M. Ryan, Johnmarshall Reeve, Alexander Yeung, and Chris Lonsdale.

Correspondence concerning this article should be addressed to Michael Noetel, School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia. Email: m.noetel@uq.edu.au
Teachers’ behavior helps determine the quality of students’ motivation and their engagement at school (Korpershoek et al., 2016; Lazowski & Hullemann, 2016; Reeve, 2009; Reeve & Cheon, 2021; Reeve & Jang, 2006; Ryan & Deci, 2017; Vasconcellos et al., 2020). When teachers foster high-quality, autonomous motivation in their students, there are multiple behavioral, cognitive, and affective benefits (Bartholomew et al., 2018; Jang et al., 2010; Reeve et al., 2004; Tessier et al., 2010). Autonomously motivated students are those who feel personal ownership and self-endorsement in their learning (Reeve & Cheon, 2021; Ryan & Deci, 2017). These students are more engaged in classroom activities and achieve better academic outcomes, compared with their less autonomously motivated peers (Froiland & Worrell, 2016; Gottfried et al., 2008; Howard et al., 2021; Reeve, 2009; Vansteenkiste et al., 2008). Unfortunately, student motivation often deteriorates over time and teacher behavior plays a moderating role in this regard (Gillet et al., 2012; Gnams & Hanfstingl, 2016; Lepper et al., 2005). That is, some teachers accelerate this decline whereas others can reverse the trend.

To harness the power of teachers to make a difference to student motivation, researchers have designed interventions grounded in self-determination theory (SDT; Ryan & Deci, 2020). Such interventions aim to help teachers foster students’ autonomous motivation by learning to become more supportive of their psychological needs (for a review, see Reeve & Cheon, 2021). These teacher-focused interventions have been applied from early childhood to adult learning, across a range of subject domains, and in 17 different nations (Reeve & Cheon, 2021). These interventions usually comprise multiple components, such as taking students’ perspectives, offering meaningful choices, and offering rationales (Cheon et al., 2012; Reeve et al., 2019). Yet, it is often difficult for readers of the subsequent publications to identify what components were used in an intervention, which component was most effective, or what each component represents in practice (Craig et al., 2008; Lazowski & Hullemann, 2016; Rosenzweig & Wigfield, 2016). This happens because intervention programs may contain different components, components may be incompletely reported, or the same components may have been labeled differently (Michie et al., 2011; Michie, 2009). These problems present barriers to implementation, replication, and synthesis of scientific evidence. Without a good classification system of teacher motivational behaviors (TMBs), it is difficult for primary research to replicate effective interventions, for secondary research to synthesize the effectiveness of such interventions (e.g., reviews and individual participant analyses; Higgins et al., 2021), and for practitioners to implement those interventions faithfully (Moreau & Gamble, 2022). As a solution to these problems, classification systems for intervention components are common practice in health and medicine where they serve to increase the quality of interventions and research (Michie et al., 2011; Teixeira et al., 2020). Yet few classifications of intervention components exist in educational psychology, potentially exacerbating failures to replicate intervention effects (Plucker & Makel, 2021). To address this gap and facilitate implementation, reproducibility, and synthesis, in this study, we created a classification system for teachers’ motivational behavior informed by SDT.

Behavioral Classification Systems Facilitate Implementation, Reproducibility, and Synthesis

In the health domain, classification systems provide a range of benefits that we aim to reproduce in educational research. Classification systems facilitate reproducibility because they provide a reliable and clear system for identifying and describing specific intervention components (Michie et al., 2011; Teixeira et al., 2020). The most useful classification systems are developed through iterative consultation with experts (e.g., Michie et al., 2013; Teixeira et al., 2020). These consultations help craft descriptions on essential components of each behavior while trying to avoid ambiguity and confusion. It is critical to clearly understand intervention components so researchers and practitioners can reliably evaluate and implement those interventions. For example, feedback is influential in health and education (Wisniewski et al., 2020), but the kind of feedback matters. Where study authors might merely say “participants were given feedback on their progress,” health behavior change taxonomies help distinguish between feedback on behaviors (e.g., step-count), feedback on outcomes (e.g., weight), biological feedback (e.g., heart rate), self-monitoring as a form of feedback (e.g., pedometers), and monitoring by others but without feedback (e.g., attendance data). Each of these types of feedback appears to have different effects for self-efficacy and behavior, which often further varies depending on the population (e.g., Ashford et al., 2010; French et al., 2014). Classification systems help reproducibility because they allow researchers to describe interventions in a way that lets other researchers replicate the core components of the intervention (Michie et al., 2015; Michie et al., 2015).

An obvious extension of this benefit is implementation. If researchers identify an SDT-based intervention that works, then practitioners working with teachers will need to know what core components were involved in that intervention. It is easier, for example, to implement an SDT intervention that specifically targets five behaviors from a clearly described list, than it is to implement a loosely defined SDT intervention without reference to specific behaviors. Classification systems can go into more detail about intervention components than is usually presented in research papers. Teixeira et al. (2020) identified detailed descriptions of SDT intervention components in health, and they explained how each intervention component supported each psychological need. If the same were available for education, it would help teachers to translate effective interventions into practice, particularly when they are less familiar with the details of the psychological theory. Although a nuanced and sophisticated understanding of the theory would be ideal, a clear and robust translation of that theory into practice could help act as a bridge between researchers and educators.

Another benefit of behavioral taxonomies is for use in evidence synthesis, like systematic reviews and meta-analyses on the effects of SDT-based interventions. Meta-analyses in education are plagued by unexplained heterogeneity (de Boer et al., 2014). Even after controlling for many features of the intervention, some interventions work better than others. The same is true in health research, where taxonomies of behavioral components have helped to disentangle some of that heterogeneity (e.g., Ashford et al., 2010; French et al., 2014; Michie, Abraham, et al., 2009). By being able to reliably code each intervention for the techniques that they employed, researchers can meta-analytically assess whether effective interventions are more likely to use some components, compared with the ineffective interventions (Ashford et al., 2010; French et al., 2014; Michie, Abraham, et al., 2009). For example, in over 100 trials to change diet and exercise, interventions that asked participants to...
monitor their own behavior were more effective than those that did not, controlling for all other intervention components (Michie, Abraham, et al., 2009).

These kinds of conclusions are difficult to assess through individual studies because that would involve randomly assigning each possible component to see the effects on its own. Such an undertaking would be expensive and complicated. Instead, a classification of motivational behaviors would allow those involved in evidence synthesis to assess whether interventions are more effective when they employ specific intervention components. By creating a detailed classification system that experts agree upon, those doing meta-analyses are more likely to include important intervention components (e.g., to assess for the provision of choices), to code components reliably (e.g., what “choice” looks like in a classroom), and to use the same vernacular across meta-analyses (e.g., such that one review looking at “choice” can be compared to another).

Some taxonomies of intervention components are atheoretical (Michie et al., 2013). These are useful for making data-driven decisions about what components work when multiple theories might explain outcomes, or when theory advancement is less focal. Other classification systems are focused on a specific theory (e.g., SDT; Teixeira et al., 2020), which has a range of advantages. Most theories hypothesize a range of behaviors that lead to improvements in motivation, and a powerful test of those theories is to see whether theory-driven interventions have hypothesized outcomes (Hagger & Weed, 2019; Lazowski & Hulleman, 2016). Researchers can become much more confident in a theory if students randomized to receive a theory-driven intervention become more motivated than those who do not, especially when effects are mediated by hypothesized mechanisms. But, to test and apply a theory via interventions, it is essential to understand how the theory links to the specific intervention components (Michie et al., 2018). Otherwise, the concordance between theory and intervention can be unclear. In health settings, “theory-driven” interventions vary dramatically in the number of theory-adherent intervention components they use (Ntoumanis et al., 2021). Also, up to 90% of “theory-driven” interventions do not report how each intervention component relates to the theory (Prestwich et al., 2014). We are not aware of any efforts to assess this percentage in education. This is a problem because researchers may be “testing a theory” using an intervention that is weakly aligned to those theories. Hence, a classification system of theory-adherent motivational behaviors is essential for both intervention development and theoretical advancement in education. In this study, we focus on creating a classification of teacher behaviors based on SDT.

Self-Determination Theory

SDT is a theory of motivation that has been well established in education (Reeve & Cheon, 2021; Ryan & Deci, 2020). It contains six “mini-theories” that together propose a causal model for how teacher behavior influences student outcomes (Ryan & Deci, 2017). Working backwards from those outcomes, students learn more, are more engaged, and enjoy school more when motivated by more autonomous forms of motivation (Taylor et al., 2014; Vasconcellos et al., 2020). Autonomous forms of motivation are those that are more self-directed, such as learning for the inherent joy of doing an activity (“intrinsic motivation”) or as a means to personally valued goals (“identified regulation”; Ryan & Deci, 2017).

In contrast, students may underperform and be less happy when motivated by controlled reasons (Taylor et al., 2014; Vasconcellos et al., 2020). These forms of motivation include feelings of obligation or contingent self-worth (“introjected regulation”), and a desire to receive rewards or avoid punishment (“external regulation”; Ryan & Deci, 2017). Autonomous motivation leads to better outcomes than controlled motivation in many domains, including education. A meta-analysis of 223,209 students found autonomously motivated students are more engaged, effortful, satisfied, and happy (Howard et al., 2021). They are less absent, bored, anxious, depressed, and likely to drop out of school (Howard et al., 2021). The benefits of autonomous motivation have also been shown in meta-analyses of teacher motivation (Slinm et al., 2020), leadership (Slinm et al., 2018), and health behavior (Ng et al., 2012; Ntoumanis et al., 2021).

The benefits of autonomous motivation are so robust because those types of motivation are driven by the satisfaction of three basic psychological needs (Bureau et al., 2022; Ryan & Deci, 2017). According to SDT, all people have a need to feel effective (the need for competence), to feel connected to those they care about (relatedness), and to feel volition in and a self-endorsement of activities they undertake (autonomy; Ryan & Deci, 2017). Consistent with SDT, the aforementioned meta-analyses all showed that autonomous forms of motivation are more likely when these basic psychological needs are satisfied (Bureau et al., 2022; Ng et al., 2012; Slinm et al., 2018; Vasconcellos et al., 2020). In education, teachers who support basic psychological needs confer a range of benefits to their students (Bureau et al., 2022; Jang et al., 2016; Reeve & Cheon, 2021; Ryan & Deci, 2020; Taylor et al., 2014). However, thwarting basic psychological needs can contribute to a range of negative consequences, including lower self-esteem, disengagement, and poor academic performance (Bartholomew et al., 2018; Reeve & Cheon, 2021; Ryan & Deci, 2020).

Unfortunately, many teachers exhibit controlling, cold, or chaotic teaching styles (Aelterman et al., 2019; Van den Bergh et al., 2013). Controlling styles are those where teachers pressure students to follow the teacher’s rules, regardless of student preferences (thwarting autonomy; Aelterman et al., 2019). Cold teachers show little personal care or concern for their students (thwarting relatedness; Van den Bergh et al., 2013). Chaotic teaching styles leave students to lean on their own, leaving them feeling overwhelmed or confused (thwarting competence; Aelterman et al., 2019). Fortunately, teachers can learn how to avoid enacting controlling instructional behaviors that thwart students’ basic psychological needs and instead adopt replacement instructional behaviors that support the three psychological needs (Reeve & Cheon, 2021; Su & Reeve, 2011). They can, for example, support autonomy by providing students with choices rather than mandates, or provide rationales rather than unjustified directives (Aelterman et al., 2019; Patall et al., 2017; Reeve & Jang, 2006). They might support relatedness by acknowledging and accepting negative affect rather than punishing it, or expressing interest in students (Patall et al., 2017; Reeve & Jang, 2006). They might support competence by providing specific, informative feedback and clear goals (Aelterman et al., 2019; Patall et al., 2017; Reeve & Jang, 2006). The goal of these interventions is to simultaneously reduce the risk that teachers thwart students’ psychological needs while also increasing the chance that teachers support those needs (Reeve & Cheon, 2021; Su & Reeve, 2011). In doing so, they are likely to increase student motivation, engagement, and
learning (Jang et al., 2016; Reeve & Cheon, 2021; Ryan & Deci, 2020; Taylor et al., 2014).

Although student motivation is influenced by many factors, such as the values of the student (Ryan & Deci, 2017), teacher behaviors have the highest leverage for interventions because they have strong effects on students while also being malleable (Reeve & Cheon, 2021; Ryan & Deci, 2020; Su & Reeve, 2011). Learning how to support psychological needs can also confer a range of benefits to educators, who can also become more motivated by learning how to better motivate others (Ntoumanis et al., 2017). Reaching a consensus on the descriptions of these teacher behaviors is critical to improve how well we assess and implement SDT interventions. A robustly produced classification system could help us understand which teacher behaviors are most influential, and enable tests and translations of those behaviors in schools.

Robust Methods for Developing Behavioral Taxonomies

When researchers have developed behavioral taxonomies in the past, there have been two broad approaches. In the first, a relatively small group of experts—usually less than 10—write a paper where they list and describe the behaviors they think are relevant (e.g., Abraham & Michie, 2008; Michie et al., 2011). This may be similar to what educational researchers have been doing informally, listing the behaviors that the authorship team believes are consistent with that theory. Although this approach is efficient, more recent taxonomies have leveraged the Delphi method as a more formal and systematic means of gaining expert consensus (Hardcastle et al., 2017; Michie et al., 2013; Teixeira et al., 2020). In our study, we use this robust method to develop our classification of teacher behaviors.

The Delphi method involves asking experts to iteratively and systematically answer a number of questions, ideally until they reach consensus (Brown, 1968). Between each iteration, experts see what their peers thought, and are given an opportunity to update their beliefs on the basis of those opinions (Brown, 1968). Delphi studies aim to eliminate many of the biases that often foil group decision-making processes (Powell, 2003). For example, researchers using the method tend to assemble a large number of experts (usually >20) to more reliably leverage the “wisdom of the crowd” while aiming to maintain high standards for panel membership (Baker et al., 2006). This larger number of experts is more likely to fully cover the “landscape” of perspectives on the question. Researchers using the method often de-identify the contributions of each group member so arguments are judged on their merit rather than on the personal identity of who makes the argument (Moore, 1987). They also ask for independent opinions in parallel so assessments are less likely to be clouded by the judgments of others. Applied to behavioral taxonomies, the Delphi method is likely to lead to a more reliable, clear, exhaustive, and authoritative list of behaviors than taxonomies developed by a small authorship team using ad hoc procedures (Hardcastle et al., 2017; Michie et al., 2013; Teixeira et al., 2020).

Aim of the Present Study

In this study, we used a Delphi method to create a classification of teacher behaviors consistent with SDT. As per previous Delphi studies that catalog intervention components (Hardcastle et al., 2017; Michie et al., 2013; Teixeira et al., 2020), we first searched the literature to create an initial list of candidate behaviors. Next, we assembled a large group of researchers with expertise in SDT applied to educational settings. We then used the Delphi method to work with these experts to:

- clarify the descriptions of each behavior,
- rate the relevance of each behavior to SDT,
- align each behavior to a basic psychological need, and
- estimate the average likely effect of those behaviors on student motivation.

The experts were also asked to identify redundant behaviors, and suggest missing ones. The ultimate goal of the process was to create a mutually exclusive and collectively exhaustive list of teacher behaviors that support or thwart psychological needs. In doing so, we aimed to create a classification system of motivational behaviors that researchers and practitioners could use to better implement, reproduce, and synthesize interventions for improving student motivation.

Method

Similar to the procedure in the previous classification systems, we applied a three-round Delphi procedure (Michie et al., 2013; Teixeira et al., 2020). For most questions, three rounds of the Delphi method are generally enough to reach an equilibrium where future rounds substantially do not change results (Delbecq et al., 1975). As described below, we assembled a panel of experts in SDT in education, generated an initial list of teacher behaviors, and used three Delphi rounds to refine that list.

Participants

To solicit diverse but authoritative perspectives on how teachers support and thwart students’ basic psychological needs, we assembled a panel of international experts. In this study, we invited researchers if they:

- had a PhD in motivation, education, or applied psychology;
- published at least three articles focusing on SDT—at least one of which was an intervention—in peer-reviewed journals indexed in PubMed or Scopus in the preceding 5 years; and
- had at least 5 years of related experience in education as an academic or a researcher.

These criteria are consistent with recommendations for objectively and consistently operationalizing expertise (Baker et al., 2006). There are no agreed-upon standards for a minimum panel size (Jorm, 2015; Powell, 2003). As per recommendations, we used existing Delphi studies that met consensus as a guide for our sample size (Jorm, 2015). Previous studies aiming to develop a classification of behavior change techniques recruited between 10 and 18 experts (Hardcastle et al., 2017; Michie et al., 2013; Teixeira et al., 2020). To account for the potential of attrition (Donohoe & Needham, 2009), in this study we decided on a conservative number of at least 30 experts. Expert recruitment began after the first author gained clearance from the Australian Catholic University human research ethics committee (Ethics Register Number: 2020-160E).

We used recent systematic reviews to collate papers using SDT interventions in educational settings (Lazowski & Hulleman, 2016; Reeve & Cheon, 2021; Ryan & Deci, 2020; Vasconcellos et al., 2020; Taylor et al., 2014; Needham, 2009), in this study we decided on a conservative number of at least 30 experts. Expert recruitment began after the first author gained clearance from the Australian Catholic University human research ethics committee (Ethics Register Number: 2020-160E).
Developing an Initial List of Teacher Motivational Behaviors

To develop an initial list of TMBs, we collated behaviors from intervention descriptions, theory papers, questionnaire items, and existing taxonomies of behavior change interventions. We screened systematic reviews for interventions and questionnaires assessing teacher behaviors (Lazowski & Hulleman, 2016; Smith et al., 2016; Su & Reeve, 2011; Vasconcellos et al., 2020). We also reviewed theory papers (Aelterman et al., 2019; Ryan & Deci, 2017) and previously developed behavior change taxonomies (Hardcastle et al., 2017; Michie et al., 2013; Teixeira et al., 2020). From all these sources, we collated 1,151 behaviors that could plausibly be used by teachers that might influence student motivation. We stopped when we reached saturation, that is, when all new behaviors were subsumed by behaviors already on the list.

Naturally, this process resulted in substantial redundancy, so to create a mutually exclusive and collectively exhaustive list of behaviors we used a binning and winnowing protocol (DeWalt et al., 2007; Måsse et al., 2016). Binning involves systematically grouping things that refer to the same latent construct (DeWalt et al., 2007). winnowing involves reducing the contents of those bins into a representative example (DeWalt et al., 2007). Binning and winnowing have been used to create a comprehensive bank of parenting practices (Måsse et al., 2016) and patient-reported outcomes in chronic diseases (DeWalt et al., 2007). The process generally involves three steps:

1. grouping similar behaviors into bins;
2. winnowing behaviors from bins into an exemplar of that bin; and
3. refining exemplars via iterative feedback.

For Step 1, four authors created an initial list of 48 “bins” for behaviors based on theory. Then, eight authors took the initial list of behaviors and placed them into those bins. Each behavior was classified independently and in duplicate by two of those authors. When behaviors did not fit into an existing bin, authors created a new bin, leading to an expanded list of 61 bins. For each of those bins, two authors completed Step 2—creating an exemplar of that bin. Exemplars contained:

- a meaningful name for the behavior (e.g., “Use of pressuring language”);
- a draft description of the behavior (e.g., “Using pressuring or controlling language when explaining tasks, providing feedback, etc.”);
- an example of the behavior used by a teacher (e.g., “You should…” “You have-to…” “You must…”); and
- a description of the function of the behavior in promoting or thwarting motivation (e.g., “Increases perceived external pressure to complete the task for imposed reasons”).

This initial draft list of behaviors was then member-checked (Step 3) by the eight authors who conducted the binning, and five teachers from local secondary schools. Based on the input of these authors and teachers, two authors refined this list of behaviors before using them as the foundation of the Delphi procedure. Following this member checking, 12 motivational behaviors were added to the candidate list, meaning the Delphi procedure started with 73 possible TMBs.

Delphi Procedures

We designed and distributed the surveys online using the Research Electronic Data Capture system (REDCap; Patridge & Bardin, 2018). In the first round, the experts provided qualitative feedback on the label name, description, example behavior, and function description of each TMB. They judged whether the behavior was related to SDT. If their answer was yes, they identified which basic psychological need that behavior most strongly influenced, and rated how strongly they felt the behavior influenced motivation (7-point scale ranging from −3 [strong negative effect] to +3 [strong positive effect]). To help generate a mutually exclusive list of behaviors, at the end of the survey, we provided experts with a full list of TMBs and asked them to identify whether any behaviors appeared to be redundant (i.e., where two TMBs overlapped such that they described the same essential behavior). To help generate a collectively exhaustive list, experts were also asked to nominate any other behaviors they thought were missing from the list.

After each round of the Delphi process, four authors refined the TMBs in response to the expert feedback. Where actioning recommendations involved major changes (e.g., substantially different function description), the revised TMB was considered a new behavior, and we discarded existing ratings (e.g., of effect). In Rounds 2 and 3, we provided experts with the updated list of behaviors where ratings were available, and gave them visual feedback of the panel’s responses to the previous round via bar charts (see example in Figure 1). Visual feedback like this helps panelists quickly see the responses of the other experts so they can assess how their beliefs compare with those of the group (Ward et al., 2014). Experts could choose to use this feedback in their updated ratings or not. Below each behavior, we asked experts to provide qualitative
feedback on the behavior’s label and description, the example, and the function description. We then also asked them to rate whether the TMB was relevant to SDT, and if so, to identify the most appropriate psychological need and the anticipated effect on motivation. We also asked them to identify missing or redundant behaviors at the end of each Delphi survey. When a TMB reached consensus on all ratings and no changes were recommended, it was added to the final list of teacher behaviors and not rated again.

Consensus Criteria

There are no defined standards for consensus for all questions in Delphi studies (Keeney et al., 2006; Trevelyan & Robinson, 2015). This is because it is easier for all panelists to agree on a binary choice (“yes” vs. “no”) than for all panelists to provide exactly the same score on a 7-point scale. As a result, defining consensus criteria is an inherently subjective task and should account for the nature of the question and the response scale. A systematic review of 100 Delphi studies found that the percentage agreement was the most frequently applied method to achieve consensus (25 studies), although a specific agreement threshold was defined in only half of those studies (Diamond et al., 2014). Among Delphi studies, the consensus criteria vary from 51% (Loughlin & Moore, 1979) to 95% (Stewart et al., 1999).

In the current Delphi study, we used the percentage agreement to analyze the “Relevance to SDT” and “Psychological Need” questions because they were nominal scales. We determined the cutoffs based on existing recommendations (Keeney et al., 2006; Trevelyan & Robinson, 2015) and previous similar Delphi studies (Hardcastle et al., 2017; Michie et al., 2013; Teixeira et al., 2020). For the binary question (i.e., “Is this behavior relevant to SDT?”), we applied a conservative agreement level of 90% as the consensus criteria. For the other nominal question (“Which psychological need does this influence most?”), we used a slightly lower consensus criteria of 80% agreement because there were more response options, and only those who answered “yes, this is relevant to SDT” were offered this question. This remains more stringent than the approach used in previous similar Delphi studies (e.g., 75%; Teixeira et al., 2020).

We used a different criterion for the question asking experts to rate the size of the anticipated effect for this behavior. The panelists responded on a 7-point, ordinal scale ranging from −3 (strong negative effect) to 0 (neutral) to +3 (strong positive effect). We judged the median to be an appropriate measure of central tendency. In line with the most conservative recommendations from a systematic review of Delphi studies (Diamond et al., 2014), we defined consensus as “90% of votes within one point of the median.” For example, if the median response was +1 (slight positive effect) then we said the effect rating reached consensus if 90% of experts answered between 0 (neutral) and +2 (moderate positive effect).

At the completion of the three rounds, we collated behaviors that were overlapping, which some experts had recommended for
deletion. Rather than make a unilateral decision, we asked all experts to rate whether or not those behaviors should be deleted. We presented de-identified arguments for and against deletion, if relevant, and deleted a behavior if more than 51% of experts agreed that the behavior should be removed.

Transparency and Openness

All the research materials, data, and analysis code are available on the Open Science Framework (https://osf.io/apvyf/). Data were analyzed using R, Version 4.0.3 (R Core Team, 2020) and the packages ggplot2, Version 3.3.5 (Wickham, 2016), and tidyverse, Version 1.3.1 (Wickham et al., 2019). This study’s design and its analysis were not preregistered.

Results

Delphi Round 1 Results

Thirty-four experts completed the Delphi Round 1 survey. From the initial list of 73 TMBs, 21 reached consensus across all questions in Round 1 (relevance to SDT, targeted psychological need, and anticipated effect; see the Delphi Round 1 materials, results, and plots in File 1 in the online supplemental materials; also available on the Open Science Framework at https://osf.io/apvyf/?view_only=5f7d11d1d23a142f58b7b0080dad3e73). We applied the experts’ qualitative feedback and included the 52 TMBs that did not reach consensus in the next round to be rerated. Also, experts suggested nine new TMBs which we added to the next survey. Also, experts substantially modified the descriptive information for two behaviors that reached consensus in Round 1 (Allow for student input or choice, and Provide conditional positive regard). Because the modifications were substantial, we treated the behaviors as new items and asked experts to rerate them in Round 3.

Delphi Round 2 Results

Thirty-two experts (out of 34 participating experts) completed the Round 2 survey. Of the 61 TMBs in this round, 24 TMBs reached consensus for all questions (see the Delphi Round 2 materials, results, and plots in File 2 in the online supplemental materials; also available at https://osf.io/apvyf/?view_only=5f7d11d1d23a142f58b7b0080dad3e73). We applied the experts’ qualitative feedback and included the TMBs that did not reach consensus in the next round survey to be rerated. We removed four TMBs after being identified by a number of authors as obviously redundant (e.g., “Unfair use of praise” was the antithesis of “Fair use of praise”). Experts suggested one new TMB which we added to the next survey.

Delphi Round 3 Results

All 34 experts completed the Round 3 survey. Of the 36 remaining TMBs, 10 reached consensus for all three questions (see the Round 3 materials, results, and plots in File 3 in the online supplemental materials; https://osf.io/apvyf/?view_only=5f7d11d1d23a142f58b7b0080dad3e73). Thirteen behaviors reached consensus as relevant to SDT, however, they did not reach consensus for “psychological need,” “effect,” or both. In this round, we also presented the TMBs that reached consensus in Rounds 1 and 2, so the experts could recommend any overlapping/redundant behaviors. Twenty-two TMBs were recommended for deletion due to overlap with other TMBs. As described earlier, we asked experts to vote on whether or not these should indeed be deleted. Thirty-one experts responded (91%). Based on those votes, 17 TMBs were removed, and five TMBs were retained (File 4 in the online supplemental materials). Any other behaviors removed throughout the process are described in File 5 in the online supplemental materials. The final classification consisted of 57 TMBs (see Table 1).

Discussion

In this study, we built a system for identifying and classifying SDT-based TMBs that influence student psychological needs. Our Delphi panel met consensus on 57 behaviors being relevant to SDT. For most behaviors, the panel reached rigorous consensus criteria for the psychological need that each behavior targeted, the most likely effect on motivation, or both.

With this classification tool, we aimed to help the fields of education and educational psychology to reproduce, implement, and synthesize effective motivational interventions. For example, observational or experimental research could systematically assess which specific teacher behaviors have the strongest effects on student psychological needs, motivation, and engagement. Researchers who test the effects of teacher training interventions could use this classification to describe which strategies they are using or to assess and report on the fidelity and implementation of those interventions. When practitioners and policymakers implement interventions at scale, they could then refer to the classification system as a source for detailed descriptions of which behaviors were included, and why they influence psychological needs. For pre-service and in-service teachers, the classification system may be a useful guide to what “need-supportive” and “need-thwarting” teaching looks like. And, regardless of whether researchers have already described their interventions using the classification, researchers conducting evidence synthesis could assess whether these teacher behaviors systematically explain differences in outcomes. For example, conducting a moderation analysis for interventions with and without “student input or choice” (AS1) would test SDT’s hypothesis that choice is a potent strategy for improving motivation, via support for autonomy (Reeve & Cheon, 2021; Ryan & Deci, 2020).

Experts Agree on Many Influential Behaviors

We do not yet have meta-analytic assessments of the effects of each TMB, but our international panel of experts provides a number of recommendations for how to nurture student psychological needs. Most teachers would intuitively understand the destructive effects of yelling (RT4), unfair punishments (RT3), abusive language (RT2), and criticism of fixed qualities (CT2). However, experts also agreed on the benefits of many strategies that might be less common practice. For example, they agreed that moderate benefits for satisfying psychological needs could be achieved by providing students with rationales (AS3), allowing for input or choice (AS1), helping students find ways of monitoring their own progress (CS14), and by showing empathy for students’ point of view (RS6). Some of these strategies are not common practice and are amenable to change, so they would be a useful starting point for interventions (Reeve & Cheon, 2021).
<table>
<thead>
<tr>
<th>No.</th>
<th>Teacher behavior</th>
<th>Description</th>
<th>Example</th>
<th>Function description</th>
<th>Effect on motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdn</td>
<td>M</td>
<td>Min</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1</td>
<td>Teacher Motivational Behaviors (TMBs) Derived Through Expert Consensus, Ordered by Psychological Need and Effect on Motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS1</td>
<td>Allow for student input or choice</td>
<td>Create opportunities for students to meaningfully direct the activities they do in class</td>
<td>“Feel free to work with a friend or do it by yourself.”</td>
<td>Allows students to choose tasks that align with their priorities and capabilities; supports the ownership of the behavior</td>
<td>+2</td>
</tr>
<tr>
<td>AS2</td>
<td>Teach in students’ preferred ways</td>
<td>Use knowledge gleaned about the student values and preferences to design class activities customized to them</td>
<td>“I know you love comics so I based today's lesson on…”</td>
<td>Aligns lesson activities to student’s intrinsic reasons for learning rather than imposing extrinsic reasons</td>
<td>+2</td>
</tr>
<tr>
<td>AS3</td>
<td>Provide rationales</td>
<td>Explain the reason to perform the behavior (e.g., why an activity is important and valuable, or how it might be personally useful)</td>
<td>“Doing these strength exercises makes our bones stronger, giving us a healthier body.”</td>
<td>Students understand why they are doing an activity, and ideally aligns the task to a student’s values</td>
<td>+2</td>
</tr>
<tr>
<td>AS4</td>
<td>Allow student own-paced progress</td>
<td>Allow students to work independently and to solve a problem in their own pace</td>
<td>“Solve the puzzle at your own pace.”</td>
<td>Lets students manage their own cognitive load so they do not get frustrated or overwhelmed</td>
<td>+2</td>
</tr>
<tr>
<td>AS5</td>
<td>Rely on invitational language</td>
<td>Instead of telling students what they must, have to, or should do, invite students to self-initiate into learning activities</td>
<td>“You may want to try this…” and “This behaviour has worked for students in the past who have had this same problem, would you like to try it?”</td>
<td>Reduces perceived external pressure to complete the task for imposed reasons and increases the sense of ownership of the behavior</td>
<td>+2</td>
</tr>
<tr>
<td>AS6</td>
<td>Ask students about their experience of lessons</td>
<td>Ask students for feedback about how classes are going; this could apply to either the content of lessons or the process/learning design</td>
<td>“On these sheets please write down what you liked about today’s lesson, what you didn’t like, and what was most unclear. Remember it’s anonymous.”</td>
<td>Gives students a safe opportunity to suggest constructive input and shape the way classes are run, so lessons can better cater to their needs and interests</td>
<td>+2</td>
</tr>
<tr>
<td>AS7</td>
<td>Teaching students to set intrinsic life goals for learning</td>
<td>Help students link learning to other intrinsic life goals, like helping others, being healthy, embracing challenges, or improving the world</td>
<td>“Reading helps me to gain knowledge about life” or “I want to use my reading skills to read to little kids.”</td>
<td>Students will try to understand the lessons more, become better at doing the activities, so that students can help others someday, or discover something interesting</td>
<td>+1</td>
</tr>
<tr>
<td>AS8</td>
<td>Provide a variety of activities</td>
<td>Provide a variety of activities in a way that keeps things interesting</td>
<td>Teacher regularly changes the format of the class (debates one lesson, worksheets the next), and presents content in dynamic ways (teaches U.S. history using Hamilton).</td>
<td>Reduces boredom</td>
<td>+1</td>
</tr>
<tr>
<td>AS9</td>
<td>Provoke curiosity</td>
<td>Ask a curiosity-inducing question</td>
<td>“Why do we always see the same side of the moon?”</td>
<td>Piques student interest by facilitating their exploratory behavior</td>
<td>+1</td>
</tr>
<tr>
<td>AS10</td>
<td>Discuss class values*</td>
<td>Collaboratively establish the values important to display in the class, or remind students of the collaboratively derived values</td>
<td>“We all thought helping each other was important, so if you see anyone struggling with the activities today, see if you stop to help them through the challenging parts.”</td>
<td>Connects the activities that take place in class with values that the student cares about</td>
<td>+1</td>
</tr>
<tr>
<td>AS11</td>
<td>Provide extra resources for independent learning</td>
<td>Introduce extra resources for further learning or support outside of class time</td>
<td>“If you want more help, remember maths club before school tomorrow.” “Here are some extra problems if you want to practise at home.”</td>
<td>Allows for self-directed learning and progress outside of class time</td>
<td>+1</td>
</tr>
<tr>
<td>AT1</td>
<td>Use of pressuring language</td>
<td>Using pressuring or controlling language when explaining tasks, providing feedback, and so forth. Set up activities so there are times where some students are not doing anything</td>
<td>“You should…” “You have to…” “You must…”</td>
<td>Increases perceived external pressure to complete the task for imposed reasons</td>
<td>−2</td>
</tr>
<tr>
<td>AT2</td>
<td>Set up activities that exclude some students</td>
<td>“If you have finished the questions, just sit quietly until everyone else is finished.”</td>
<td>Students do not have opportunities to engage even if they want to</td>
<td>−2</td>
<td>−1.82</td>
</tr>
<tr>
<td>AT3</td>
<td>Set pressuring deadlines</td>
<td>Allow a capped amount of time for a task, or remind students they are running out of time</td>
<td>“Spend 10 minutes on this worksheet.” “We only have a few minutes left.”</td>
<td>Adds pressure on students to work faster and finish tasks when the teachers says to</td>
<td>−2</td>
</tr>
<tr>
<td>AT4</td>
<td>Use praise as a contingent reward</td>
<td>Praise students almost exclusively when they do what they are told</td>
<td>Teacher says to a student “Well done!” when they do what they were told.</td>
<td>Increases perceived external incentives for doing an activity that is favored by a teacher</td>
<td>−1</td>
</tr>
<tr>
<td>AT5</td>
<td>Exhibiting solutions or answers*</td>
<td>Give answers to problems instead of letting students figure it out</td>
<td>“The answer is 42.”</td>
<td>Stifles self-directed learning and provides external locus of causality for success (i.e., from the teacher)</td>
<td>−1</td>
</tr>
</tbody>
</table>

(Table continues)
Table 1 (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Teacher behavior</th>
<th>Description</th>
<th>Example</th>
<th>Function description</th>
<th>Effect on motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>Provide optimal challenge</td>
<td>Competence supportive (CS)</td>
<td>“Most of you could start on question 1. If you got 100% on the homework, you can start on question 13.”</td>
<td>Students get the right amount of challenge for them</td>
<td>+2 2.28</td>
</tr>
<tr>
<td>CS2</td>
<td>Provide specific feedback</td>
<td>“If you keep your eye on your attacker then you can try for an intercept, but mostly focus on marking your girl.”</td>
<td>Clarifies path toward goal achievement</td>
<td>+2 2.26</td>
<td></td>
</tr>
<tr>
<td>CS3</td>
<td>Praise improvement or effort</td>
<td>“I see some excellent hard work here, and some improvements over last week’s work, especially in these areas…”</td>
<td>Affirms students’ progress and improvement</td>
<td>+2 2.10</td>
<td></td>
</tr>
<tr>
<td>CS4</td>
<td>Provide feedback aimed at improvement or effort</td>
<td>“You have only used Pythagoras theorem. If you combine these two rules, it will help get that solution.”</td>
<td>Nurtures students’ progress by providing help that moves them forward in their learning</td>
<td>+2 1.95</td>
<td></td>
</tr>
<tr>
<td>CS5</td>
<td>Praise specific action</td>
<td>“This answer was very good because it showed the working out in clear steps.”</td>
<td>Clarifies behaviors that, if repeated, lead to goal achievement</td>
<td>+2 1.9</td>
<td></td>
</tr>
<tr>
<td>CS6</td>
<td>Fair use of praise</td>
<td>Complementing all three people who completed a project in specific ways</td>
<td>Increases sense of efficacy</td>
<td>+2 1.84</td>
<td></td>
</tr>
<tr>
<td>CS7</td>
<td>Set goals based on self-referenced standards</td>
<td>“Try to jump further than last time.”</td>
<td>Promotes achievable goals by calibrating them to students skill</td>
<td>+2 1.81</td>
<td></td>
</tr>
<tr>
<td>CS8</td>
<td>Display hope, encouragement, and optimism</td>
<td>“I know you can do this.”</td>
<td>Stimulates perceived ability to meet goals</td>
<td>+2 1.69</td>
<td></td>
</tr>
<tr>
<td>CS9</td>
<td>Demonstrating examples</td>
<td>Modeling or demonstrating examples</td>
<td>Provides template for student to follow</td>
<td>+2 1.68</td>
<td></td>
</tr>
<tr>
<td>CS10</td>
<td>Provide feedback in private</td>
<td>Provide corrective feedback in private</td>
<td>Mitigates risk of feedback being ego-threatening</td>
<td>+2 1.64</td>
<td></td>
</tr>
<tr>
<td>CS11</td>
<td>Clarify expectations</td>
<td>Provide clear instructions</td>
<td>Provides structure so students know exactly what to do</td>
<td>+2 1.61</td>
<td></td>
</tr>
<tr>
<td>CS12</td>
<td>Display explicit guidance</td>
<td>Provide clear guidance, clear goal, and clear action plans</td>
<td>Enables students to clearly understand what is expected of their behavior</td>
<td>+2 1.6</td>
<td></td>
</tr>
<tr>
<td>CS13</td>
<td>Ask questions to expand understanding</td>
<td>Questioning to expand understanding or thinking</td>
<td>Fosters a deeper understanding of how knowledge fits together</td>
<td>+1 1.5</td>
<td></td>
</tr>
<tr>
<td>CS14</td>
<td>Self-monitoring of progress and effort</td>
<td>Facilitate monitoring of progress, skill level, or performance</td>
<td>Provides opportunities for accurate self-reflection of effort and progress, promoting independent learning</td>
<td>+2 1.48</td>
<td></td>
</tr>
<tr>
<td>CS15</td>
<td>Active learning</td>
<td>“Complete this worksheet individually to figure out how heavy the Sydney Harbour Bridge is.”</td>
<td>Allows each student hands-on practice with an activity designed to progress development of a skill</td>
<td>+1^ 1.42</td>
<td></td>
</tr>
<tr>
<td>CS16</td>
<td>Offering hints</td>
<td>“Try to make a sentence using as few of these phonemes as possible.”</td>
<td>Supports the student’s own learning processes. Allows students to maintain an internal locus of causality during learning</td>
<td>+1 1.15</td>
<td></td>
</tr>
<tr>
<td>CS17</td>
<td>Use pupils as positive role models</td>
<td>“John, you commented on your code very well. Can we put it on the smartboard so your friends can see it?”</td>
<td>Increase self-belief through vicarious experiences of success</td>
<td>+1^ 0.62</td>
<td></td>
</tr>
</tbody>
</table>

(table continues)
<table>
<thead>
<tr>
<th>Effect on motivation</th>
<th>Teacher behavior</th>
<th>Description</th>
<th>Example</th>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competence thwarting (CT)</td>
<td>CT1 Publicly present critical feedback</td>
<td>Provides critical feedback that targets a fixed quality of performance</td>
<td>Tell students when they are not doing as well as others. You should learn from Paul (who did the best class)—"You’re not your strength, you’re your limitations." You can’t control the limitations, but you can control your strengths.</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td></td>
<td>CT2 Criticize a fixed quality</td>
<td>Provides critical feedback that targets a fixed quality of performance</td>
<td>Tell students when they are not doing as well as others. You should learn from Paul (who did the best class)—"You’re not your strength, you’re your limitations." You can’t control the limitations, but you can control your strengths.</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td></td>
<td>CT3 Criticize learning via peer comparison</td>
<td>Criticize a fixed quality</td>
<td>Tell students when they are not doing as well as others. You should learn from Paul (who did the best class)—"You’re not your strength, you’re your limitations." You can’t control the limitations, but you can control your strengths.</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td></td>
<td>CT4 Chaotic or absent teaching</td>
<td>Lack of clear instructions in class</td>
<td>Teacher leaves students waiting when assigning groups at the front. Teacher gives up on providing feedback so checks his/her emails in class.</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td></td>
<td>CT5 Undifferentiated teaching</td>
<td>The same task is set for all students regardless of their level of ability</td>
<td>"Let’s all do the same thing. I’ll do the homework board."</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td></td>
<td>CT6 Use vague criticism</td>
<td>Provides vague critical feedback with no instruction on how to improve</td>
<td>"Come on, James, you need to do better."</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td></td>
<td>CT7 Praise winning via peer comparison</td>
<td>Congratulate winners so that everyone knows who did the best</td>
<td>"The highest score on the exam was John."</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td></td>
<td>CT8 Set goals where students compete against each other</td>
<td>Set up activities where the goal is to do better than other students.</td>
<td>"Katie, I see you didn’t do your best today..."</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td></td>
<td>CT9 Grouping students on the basis of ability</td>
<td>Grouping is done publicly and students are put in groups based on their ability so that there are "top" and "bottom" groups.</td>
<td>"Group A. Less than 7: working on Set B. If you did not complete your homework, you are over here working on Set C."</td>
<td>Increases risk of feedback being ego-threatening</td>
</tr>
<tr>
<td>Relating-supportive (RS)</td>
<td>RS1 Show unconditional positive regard</td>
<td>Act warmly toward students, especially ones who are challenging or who find the course challenging</td>
<td>"I love how you’re doing this problem, John."</td>
<td>Ensures performance mistakes or behavioral misconduct are not met with ego-threatening feedback</td>
</tr>
<tr>
<td></td>
<td>RS2 Ask about students’ progress, welfare, or feelings</td>
<td>Show interest in how students are doing, both emotionally and in their mastery of content</td>
<td>"Hey, how are you feeling today?"</td>
<td>Ensures performance mistakes or behavioral misconduct are not met with ego-threatening feedback</td>
</tr>
<tr>
<td></td>
<td>RS3 Expressing cooperation</td>
<td>Be warm and kind to students</td>
<td>"The group is doing a great job."</td>
<td>Ensures performance mistakes or behavioral misconduct are not met with ego-threatening feedback</td>
</tr>
<tr>
<td></td>
<td>RS4 Promote cooperation</td>
<td>Set up activities that encourage students to work together on tasks</td>
<td>"As a group, work together to figure out this problem."</td>
<td>Ensures performance mistakes or behavioral misconduct are not met with ego-threatening feedback</td>
</tr>
<tr>
<td></td>
<td>RS5 Teacher enthusiasm</td>
<td>Teacher enthuı́siasm</td>
<td>"Let’s get charged up here!"</td>
<td>Ensures performance mistakes or behavioral misconduct are not met with ego-threatening feedback</td>
</tr>
<tr>
<td></td>
<td>RS6 Show understanding of the point of view</td>
<td>Try to understand how students see things before suggesting a new way to do things</td>
<td>"You can understand that there are often other things you’d rather do after school."</td>
<td>Ensures performance mistakes or behavioral misconduct are not met with ego-threatening feedback</td>
</tr>
<tr>
<td></td>
<td>RS7 Group students with similar interests</td>
<td>Create groups in the class when students with similar interests and values are put in groups together so that they can work on problems that match their interests and values</td>
<td>"Take a look at the country’s sports, and the other students to look at the country’s key historical events."</td>
<td>Ensures performance mistakes or behavioral misconduct are not met with ego-threatening feedback</td>
</tr>
</tbody>
</table>

Table 1 (continued)
Table 1 (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Teacher behavior</th>
<th>Description</th>
<th>Example</th>
<th>Function description</th>
<th>Effect on motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT1</td>
<td>Ignoring students</td>
<td>During times where attending to students would be appropriate (e.g., emotional distress, misbehavior, active learning) the teacher maintains distance or does not direct attention to the student</td>
<td>The teacher ignores an upset student.</td>
<td>Makes students feel they are not valued or cared for and that their efforts are not noticed</td>
<td>−3 −2.79</td>
</tr>
<tr>
<td>RT2</td>
<td>Use abusive language (content)</td>
<td>Calling students by hurtful names when they misbehave</td>
<td>Calling a student “dummie” or “moron”</td>
<td>Performance mistakes and behavioral misconduct are met with competence-threatening punishment</td>
<td>−3 −2.76</td>
</tr>
<tr>
<td>RT3</td>
<td>Provide punishments unfairly</td>
<td>Punishing only one of the two students who are speaking out of turn</td>
<td>Punishing only one of the two students who are speaking out of turn</td>
<td>Means structures are perceived as unreliable and students feel incompetent in terms of their ability to behave</td>
<td>−3 −2.59</td>
</tr>
<tr>
<td>RT4</td>
<td>Yell or use a harsh tone</td>
<td>Teacher yells to get control of the class</td>
<td>Yelling such as “HEY!” or “STOP IT!”</td>
<td>Creates a more emotionally unstable and unpredictable environment for students, increasing fear</td>
<td>−3 −2.47</td>
</tr>
<tr>
<td>RT5</td>
<td>Provide rewards unfairly</td>
<td>Rewarding only one of three people who all completed a task</td>
<td>Rewarding only one of three people who all completed a task</td>
<td>Students feel rewards are not predictable and teacher behavior unjust</td>
<td>−2 −2.41</td>
</tr>
<tr>
<td>RT6</td>
<td>Be sarcastic</td>
<td>Use sarcastic negative phrases</td>
<td>“Class started 3 minutes ago. Soooo nice of you to join us.” “It’s not like what we are learning today is important or anything.”</td>
<td>Demonstrates contempt for students; reduces student self-esteem; diminishes the student-teacher relationship</td>
<td>−2 −2.16</td>
</tr>
<tr>
<td>RT7</td>
<td>Provide conditional positive regard</td>
<td>Withdrawal warmth from a student in response to poor behavior; provide warmth and acceptance only when teacher’s expectations are met</td>
<td>“Good job! You did it the way I asked you!”</td>
<td>Demonstrate that attention and warmth are contingent upon meeting the teacher’s expectations</td>
<td>−2 −1.85</td>
</tr>
<tr>
<td>RT8</td>
<td>Apply fair punishments</td>
<td>Provide punishments fairly so students who misbehave are treated equally</td>
<td>Sending both of two students out of class when they misbehave or break a rule</td>
<td>Ensures misbehavior is consistently and reliably met with external contingencies</td>
<td>−1 −0.42</td>
</tr>
</tbody>
</table>

Note. Labels marked with ^ were placed in their modal category (e.g., autonomy support) but“psychological need” did not meet consensus. Effects marked with ^ represent median but did not meet consensus. Effects are rated between strong negative (−3) and strong positive (+3). Version with sort and filter functionality in File 6 in the online supplemental materials (also https://osf.io/apvyf/?view_only=5f7d11df23a1425f8b7b0080d3e73) for readers who want to identify the most (in-)effective behaviors across psychological needs.
Experts also agreed that a range of theoretically aligned behaviors may only have modest effects in practice. For example, experts agreed that there should be only small benefits from adding variety (AS8), offering hints instead of answers (CS16), or in grouping students with similar interests (RS7). They also agreed that there should be only slight motivational decreases for setting competitive goals (CT8) or using praise as a contingent reward (AT4). The experts’ opinions may be influenced by the expectation that these behaviors may less directly target core theoretical mechanisms of SDT, or may have competing forces that attenuate their effects. For example, praise as a contingent reward may be a method of exercising teacher control, but the destructive effects of contingent rewards may be somewhat offset by the benefits of praise on competence. Stronger causal data—like meta-analyses of randomized trials—would help verify the relatively weak benefits of these discrete behaviors. Until then, people designing interventions may want to consider whether it is better to target more influential behaviors.

As would be expected, the majority of our consensus opinions align with theoretical models of SDT (e.g., Aelterman et al., 2019; Reeve & Cheon, 2021; Ryan & Deci, 2020). This classification may help practitioners translate relatively abstract conceptual ideas, like “autonomy-supportive teaching” into a list of concrete behaviors that are observable in the classroom (Table 2). This list supports existing conceptualizations of need-supportive teaching, such as the circumplex model by Aelterman et al. (2019). That model describes eight teaching “styles” involving relative combinations of autonomy and structure. For example, “attuning” and “guiding” styles both provide a high level of need support, with “guiding” styles offering more structure and “attuning” styles being more student-directed. Aelterman and colleagues acknowledge that their model does not directly address relatedness, however, the styles implicitly describe styles with high and low levels of relatedness. For example, the “attuning” teaching includes “accepting students’ expressions of negative affect and trying to understand how students see things” (Aelterman et al., 2019, p. 498). “Demanding,” “domineering,” and “abandoning” styles all include behaviors that, according to our classification, would reduce relatedness. Our classification builds on these styles by providing the clear behaviors that exemplify support and thwarting for each psychological need, including relatedness. This is important because Relationships Motivation Theory is a key mini-theory of SDT (Ryan & Deci, 2017) and meta-analyses show relatedness predicts student outcomes, even when controlling for autonomy and competence (Bureau et al., 2022).

The consensus opinions also aligned with meta-analyses of evidence-based interventions in education. For example, experts agreed that improvement-oriented feedback improves confidence (Wisniewski et al., 2020), that teachers’ relationships with students are influential (Roorda et al., 2017), that instruction should be clear to not overwhelm students (Noetel, Griffith, et al., 2022), and that differentiation and scaffolding help learning (Belland et al., 2017; Smale-Jacobse et al., 2019). Although many of those meta-analyses targeted learning, our experts identified each as having positive moderate effects on motivation, too. We hope the detailed list of a substantial number of effective strategies, as identified by our expert panel, helps researchers and practitioners to develop effective interventions.

<table>
<thead>
<tr>
<th>Psychological need</th>
<th>Conceptual definition</th>
<th>Emblematic behaviors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need-supportive teachers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support autonomy</td>
<td>Create an environment where students feel volition, personal ownership, and self-endorsement of their learning</td>
<td>• Allow for student input or choice (AS1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Teach in students’ preferred ways (AS2)</td>
</tr>
<tr>
<td>Support competence</td>
<td>Create an environment where students feel capable of achieving their goals</td>
<td>• Provide rationales (AS3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide optimal challenge (CS1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide specific feedback (CS2)</td>
</tr>
<tr>
<td>Support relatedness</td>
<td>Create an environment where students feel accepted, understood, and worthy of attention.</td>
<td>• Praise improvement or effort (CS3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Show unconditional positive regard (RS1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ask about students’ progress, welfare, and/or feelings (RS2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expressing affection (RS3)</td>
</tr>
<tr>
<td>Controlling teachers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thwart autonomy</td>
<td>Create an environment where students feel pressured to conform to the teacher’s agenda</td>
<td>• Use pressuring language (AT1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Set up activities that exclude some students (AT2)</td>
</tr>
<tr>
<td>Thwart competence</td>
<td>Create an environment where students feel incapable of achieving their goals and unsure what is expected</td>
<td>• Set pressuring deadlines (AT3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Criticize a fixed quality (CT2)</td>
</tr>
<tr>
<td>Thwart relatedness</td>
<td>Create an environment where students feel demeaned, rejected, ignored, or judged</td>
<td>• Criticize losing via peer comparison (CT3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chaotic or absent teaching (CT4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ignore students (RT1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use abusive language (RT2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide punishments unfairly (RT3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Yell or use a harsh tone (RT4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide rewards unfairly (RT5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Be sarcastic (RT6)</td>
</tr>
</tbody>
</table>

Note. Short list of behaviors created by selecting those with mean effect ratings greater than +2 or less than −2, with the exception of starred (*) behaviors AT2 (*M = −1.82) and AT3 (*M = −1.53), included to give a clearer description of autonomy thwarting. AS = autonomy supportive; CS = competence supportive; RS = relatedness supportive; AT = autonomy thwarting; CT = competence thwarting; RT = relatedness thwarting.
Areas of Disagreement are Ripe for Future Research

It could be most useful if future-related research focused on areas where experts did not reach consensus. For example, experts did not agree on the effects of some teacher behaviors, like conditional regard (RT7), fair punishments (RT8), and grouping students on the basis of ability (CT9). These behaviors are likely controversial because the functional significance of these behaviors, or their meaning to participants, may vary depending on context. Grouping on the basis of ability may facilitate differentiation (CS1), but some children might feel the grouping publicly signals that they are in the less able group, undermining competence (Saleh et al., 2005). Behavior management may be necessary to maintain class structure (Aelterman et al., 2019), but many behavior management strategies include fair punishments (RT8) and selective ignoring (RT7; Simonsen et al., 2008). Targeted research on these controversial areas would help researchers ascertain when these strategies work, for whom, and why.

Similarly, experts did not agree on why, for example, empathy (RS6), teacher enthusiasm (RS5), and discussing class values (AS10) improved motivation. For 10 behaviors, experts agreed that the behavior influenced motivation, but did not reach consensus on the primary psychological need. It is likely that many teacher behaviors influence more than one psychological need, because all the three needs are interdependent and complementary of each other (Reeve & Cheon, 2021; Ryan & Deci, 2017). For example, “abandoning” styles of teaching are likely to thwart both relatedness and competence; “domineering” ones would thwart competence, relatedness, and autonomy (Aelterman et al., 2019). Similarly, autonomy-supportive teaching interventions usually increase satisfaction for all three needs (Cheon et al., 2012; Cheon & Reeve, 2013; Reeve & Cheon, 2021), and controlling teaching often thwarts all three needs (Reeve & Cheon, 2021; Ryan & Deci, 2017). Measures of satisfaction for autonomy, competence, and relatedness routinely intercorrelate, and factor analyses reveal that they often form a higher-order need satisfaction factor (Hagger et al., 2006). As a result, it is unsurprising that so many behaviors appear to influence multiple psychological needs. If it were more important to disentangle which behavior targeted which need, experimental data would help confirm our panel’s judgments. For example, longitudinal designs with mediation models could help determine whether each behavior influences motivation by the hypothesized psychological need.

Strengths, Limitations, and Future Directions

Our study had 34 international experts participating from 15 countries with stringent inclusion criteria and high levels of panel retention. This is a larger panel than those used to develop previous classification systems (e.g., n = 10 in Hardcastle et al., 2017; n = 18 in Teixeira et al., 2020), which meant that we were more likely to cover the breadth of opinions and expertise in the field. Still, no such panel can survey all valuable opinions—our criteria may have excluded some experts who would have provided useful, unique contributions (e.g., teachers or principals without publications in SDT). For example, many of our experts have researched the effects of TMBs and student motivation across diverse samples; however, our experts were largely from Western, Educated, Industrialized, Rich, and Democratic countries, as with most psychological research (Muthukrishna et al., 2020). While we had panelists from diverse backgrounds, including the Philippines, Turkey, Estonia, and Iran, only 20% of experts were from countries that were culturally dissimilar from the United States. Fulfillment of psychological needs is important in all cultures, but how those needs are satisfied is influenced by development and culture (Ryan & Deci, 2002). This means our results (e.g., the projected effectiveness of each TMB) may not generalize well to other cultures or developing countries. Even within developed countries, students from different backgrounds (e.g., different ethnic, racial, or socioeconomic backgrounds) can perceive teacher behaviors differently (e.g., see Patall et al., 2018). An important sustainable development goal is for all children to have access to quality education and lifelong learning opportunities (United Nations, 2015). So, future research may benefit from soliciting the perspectives of more experts from diverse populations and with different backgrounds (e.g., teachers and principals without research experience), and tailoring our findings to those populations.

In addition, in order to maintain our high levels of panel retention while maintaining the breadth of TMBs, we had to make responding to our survey efficient. This meant we needed to remove context and nuance from our examples. For example, we could not ask experts whether anticipated effects would be differentiated by gender, age, culture, level of ability or achievement, or level of socioeconomic advantage. As a result, future studies and interventions should be aware that these individual and contextual factors may moderate intervention effects. Although our Delphi study presents the likely effect of TMBs on average, those moderating factors are not well captured by our design. Similarly, some of our experts presented arguments that the consensus opinion may not have considered (e.g., on the benefits of homogenous groups; Krijsman et al., 2021) but these arguments may have been “drowned out” by the sheer number of contrary opinions. Finally, evaluating the effect of any individual behavior in isolation is difficult. The effect of one single need-specific TMB may be uncertain, whereas multiple TMBs may together yield a more gestalt “motivating style.” The effect of these “motivating styles” may be more obvious to students than the effects of any individual behavior. Clearly, more reliable and valid effect estimates would come from evidence synthesis of teacher and student data, moderated by contextual factors. Future researchers could assess the concordance between the expert opinions here and efforts to collate the meta-analytic data for intervention effects (e.g., Hattie, 2008).

Many interventions and reviews focus on useful behaviors teachers could adopt, but one strength of this study was that we looked at both supportive and thwarting behaviors. Although they have opposite effects on psychological needs, thwarting and supportive behaviors are not mutually exclusive in teachers, because each exert differential effects on different outcomes (Bartholomew et al., 2009; Haerens et al., 2015; Sheldon, 2011; Vansteenkiste & Ryan, 2013), and profile studies reveal that teachers can exhibit both types of behaviors to different degrees (Haerens et al., 2018). As a result, including need-thwarting behaviors may help researchers and practitioners not only identify which behaviors to promote among teachers, but also which behaviors to refrain from. Preventing need-thwarting behaviors may be as important as promoting need-supportive behaviors, given both types are important for different outcomes (Bartholomew et al., 2011). Ideally, teachers can swap a need-thwarting behavior for a supportive one (Reeve &
Cheon, 2021). One limitation of our study was that we did not discriminate between “need-thwarting” and “need-indifferent” behaviors, despite recent arguments for the role of need-indifferent behaviors (Bhavsar et al., 2019). Indeed, many of our “thwarting” behaviors may be better classified as “need indifferent”: Chaotic or Absent Teaching (CT4) may not actively block students’ satisfaction of needs; however, the disorganization in the class leaves students’ needs unfulfilled (Cheon et al., 2019; Huyghebaert-Zouaghi et al., 2021). Future research may benefit from separating the TMBs that actively thwart psychological needs from those that are need-indifferent. Similarly, researchers have assessed new candidate psychological needs, like variety, novelty, and safety (González-Cutre et al., 2020; Sylvester et al., 2018; Vansteenkiste et al., 2020). Although most of these needs do not yet meet all the current criteria for “basic psychological need” (Vansteenkiste et al., 2020), if the new needs are added, the classification would need to adapt, too.

To the best of our knowledge, our classification system is the first to systematically aggregate expert opinion of influential teacher behaviors in education. By building our taxonomy on a well-established theory of motivation in education, we hope this will help researchers and practitioners test and apply that theory in schools and universities. One limitation of this approach is that our classification may neglect other intervention components that are not drawn from SDT. Intervention components from other theories (e.g., achievement goal theory; Huang, 2012) are often consistent with SDT because those interventions satisfy basic psychological needs (Noetl Parker et al., 2022). For example, growth mindsets purportedly improve engagement due to a more stable sense of competence (Sisk et al., 2018). However, not all educational psychology intervention components are clearly aligned to SDT. For example, idealized influence from transformational leadership theory was not included in our taxonomy. There are many other factors that influence educational engagement (e.g., e-learning, parenting) and other models of motivation (Lazowski & Hulleman, 2016). While our classification system is not comprehensive for all interventions in the field of education, it has been designed to cover applications of SDT to teacher behavior, and we hope it sets a precedent for other efforts using different theoretical models. Other taxonomies may need to be developed for full coverage of the educational psychology literature.

Although our classification was designed to be comprehensive, 57 behaviors are a considerable list. It may be challenging for researchers or practitioners to monitor all 57 behaviors in real-world settings. The same challenge faces other fields like health, where up to 93 distinct behavior change techniques have been identified (Michie et al., 2013). We judged that it would be better to provide the full list of behaviors that experts agreed would influence motivation. By providing the raw data for these 57 behaviors (e.g., both median and mean estimates of effect), we hope researchers and practitioners can filter the list for their own purposes (e.g., choosing only “strong” effects, behaviors related to only one basic psychological need, or only those that are need-thwarting). For instance, if one limits the classification system to remove those behaviors with a mean score between −2 and 2, then the classification system would include a more manageable list of 20 behaviors (see Table 2). Similarly, we hope and expect researchers and practitioners to use this classification as but one input in their evidence-informed decision making (Newton et al., 2020). As Newton et al. (2020) argue, educators should account for their own expertise and knowledge of the learning context (learner age, culture, background, subject being studied, etc.). For example, a teacher with astute awareness of their context might decide that “teaching students in preferred ways” (AS2) might involve providing fewer choices to students (AS1) who instead prefer clear instructions and expectations (CS11). Similarly, allowing students input or choice (AS1) might look different for a Year 1 class (e.g., “draw your favorite animal”) compared with a university cohort (e.g., “choose the case study that’s closest to your professional goals”). A thumbs up from a teacher might be “praise” in some cultures (e.g., United States) and abusive language (RT2) in others (e.g., Bangladesh). We agree that researchers and practitioners will need to adapt the behaviors and recommendations here to the age, skill, background, culture, and context of the learners they are teaching.

Conclusion

In this study, we developed a classification system of TMBs, based on SDT. We used a best-practice three-round Delphi procedure to reach consensus from an international panel of 34 experts. The resulting classification of 57 behaviors can be used to facilitate reproducibility as it clearly describes a range of teacher behaviors commonly applied in research. The classification system facilitates application and translation by giving practitioners clear definitions of each intervention component, and provides estimates of how effective each component is for promoting motivation. By facilitating synthesis, reproducibility, and implementation of educational psychology research, we hope this classification makes it easier for researchers to find better ways of improving student motivation, and helps practitioners apply those methods to improve student outcomes.

References

Received February 3, 2022
Revision received July 15, 2022
Accepted October 1, 2022